Chapter 12 # Copernicus, De Revolutionibus Orbium Coelestium Nicholas Copernicus, 1543¹ # To His Holiness, Pope Paul III, Nicholas Copernicus' Preface to His Books on the Revolutions I can readily imagine, Holy Father, that as soon as some people hear that in this volume, which I have written about the revolutions of the spheres of the universe, I ascribe certain motions to the terrestrial globe, they will shout that I must be immediately repudiated together with this belief. For I am not so enamored of my own opinions that I disregard what others may think of them. I am aware that a philosopher's ideas are not subject to the judgement of ordinary persons, because it is his endeavor to seek the truth in all things, to the extent permitted to human reason by God. Yet I hold that completely erroneous views should be shunned. Those who know that the consensus of many centuries has sanctioned the conception that the earth remains at rest in the middle of the heaven as its center would, I reflected, regard it as an insane pronouncement if I made the opposite assertion that the earth moves. Therefore I debated with myself for a long time whether to publish the volume which I wrote to prove the earth's motion or rather to follow the example of the Pythagoreans and certain others, who used to transmit philosophy's secrets only to kinsmen and friends, not in writing but by word of mouth, as is shown by Lysis' letter to Hipparchus. And they did so, it seems to me, not, as some suppose, because they were in some way jealous about their teachings, which would be spread around; on the contrary, they wanted the very beautiful thoughts attained by great men of deep devotion not to be ridiculed by those who are reluctant to exert themselves vigorously in any ^{1.} E. Rosen, Nicholas Copernicus on the Revolutions, Translation and Commentary, (Baltimore and London: Johns Hopkins Univ. Press, 1992). literary pursuit unless it is lucrative; or if they are stimulated to the nonacquisitive study of philosophy by the exhortation and example of others, yet because of their dullness of mind they play the same part among philosophers as drones among bees. When I weighed these considerations, the scorn which I had reason to fear on account of the novelty and unconventionality of my opinion almost induced me to abandon completely the work which I had undertaken. But while I hesitated for a long time and even resisted, my friends drew me back. Foremost among them was the cardinal of Capua, Nicholas Schönberg, renowned in every field of learning. Next to him was a man who loves me dearly, Tiedemann Giese, bishop of Chelmno, a close student of sacred letters as well as of all good literature. For he repeatedly encouraged me and, sometimes adding reproaches, urgently requested me to publish this volume and finally permit it to appear after being buried among my papers and lying concealed not merely until the ninth year but by now the fourth period of nine years. The same conduct was recommended to me by not a few other very eminent scholars. They exhorted me no longer to refuse, on account of the fear which I felt, to make my work available for the general use of students of astronomy. The crazier my doctrine of the earth's motion now appeared to most people, the argument ran, so much the more admiration and thanks would it gain after they saw the publication of my writings dispel the fog of absurdity by most luminous proofs. Influenced therefore by these persuasive men and by this hope, in the end I allowed my friends to bring out an edition of the volume, as they had long besought me to do. However, Your Holiness will perhaps not be greatly surprised that I have dared to publish my studies after devoting so much effort to working them out that I did not hesitate to put down my thoughts about the earth's motion in written form too. But you are rather waiting to hear from me how it occurred to me to venture to conceive any motion of the earth, against the traditional opinion of astronomers and almost against common sense. I have accordingly no desire to conceal from Your Holiness that I was impelled to consider a different system of deducing the motions of the universe's spheres for no other reason than the realization that astronomers do not agree among themselves in their investigations of this subject. For, in the first place, they are so uncertain about the motion of the sun and moon that they cannot establish and observe a constant length even for the tropical year. Secondly, in determining the motions not only of these bodies but also of the other five planets, they do not use the same principles, assumptions, and explanations of the apparent revolutions and motions. For while some employ only homocentrics, others utilize eccentrics and epicycles, and yet they do not quite reach their goal. For although those who put their faith in homocentrics showed that some nonuniform motions could be compounded in this way, nevertheless by this means they were unable to obtain any incontrovertible result in absolute agreement with the phenomena. On the other hand, those who devised the eccentrics seem thereby in large measure to have solved the problem of the apparent motions with appropriate calculations. But meanwhile they introduced a good many ideas which apparently contradict the first principles of uniform motion. Nor could they elicit or deduce from the eccentrics the principal consideration, that is, the structure of the universe and the true symmetry of its parts. On the contrary, their experience was just like some one taking from various places hands, feet, a head, and other pieces, very well depicted, it may be, but not for the representation of a single person; since these fragments would not belong to one another at all, a monster rather than a man would be put together from them. Hence in the process of demonstration or "method", as it is called, those who employed eccentrics are found either to have omitted something essential or to have admitted something extraneous and wholly irrelevant. This would not have happened to them, had they followed sound principles. For if the hypotheses assumed by them were not false, everything which follows from their hypotheses would be confirmed beyond any doubt. Even though what I am now saying may be obscure, it will nevertheless become clearer in the proper place. For a long time, then, I reflected on this confusion in the astronomical traditions concerning the derivation of the motions of the universe's spheres. I began to be annoyed that the movements of the world machine, created for our sake by the best and most systematic Artisan of all, were not understood with greater certainty by the philosophers, who otherwise examined so precisely the most insignificant trifles of this world. For this reason I undertook the task of rereading the works of all the philosophers which I could obtain to learn whether anyone had ever proposed other motions of the universe's spheres than those expounded by the teachers of astronomy in the schools. And in fact first I found in Cicero that Hicetas supposed the earth to move. Later I also discovered in Plutarch that certain others were of this opinion. I have decided to set his words down here, so that they may be available to everybody: Some think that the earth remains at rest. But Philolaus the Pythagorean believes that, like the sun and moon, it revolves around the fire in an oblique circle. Heraclides of Pontus, and Ecphantus the Pythagorean make the earth move, not in a progressive motion, but like a wheel in a rotation from west to east about its own center. Therefore, having obtained the opportunity from these sources, I too began to consider the mobility of the earth. And even though the idea seemed absurd, nevertheless I knew that others before me had been granted the freedom to imagine any circles whatever for the purpose of explaining the heavenly phenomena. Hence I thought that I too would be readily permitted to ascertain whether explanations sounder than those of my predecessors could be found for the revolution of the celestial spheres on the assumption of some motion of the earth. Having thus assumed the motions which I ascribe to the earth later on in the volume, by long and intense study I finally found that if the motions of the other planets are correlated with the orbiting of the earth, and are computed for the revolution of each planet, not only do their phenomena follow therefrom but also the order and size of all the planets and spheres, and heaven itself is so linked together that in no portion of it can anything be shifted without disrupting the remaining parts and the universe as a whole. Accordingly in the arrangement of the volume too I have adopted the following order. In the first book I set forth the entire distribution of the spheres together with the motions which I attribute to the earth, so that this book contains, as it were, the general structure of the universe. Then in the remaining books I correlate the motions of the other planets and of all the spheres with the movement of the earth so that I may thereby determine to what extent the motions and appearances of the other planets and spheres can be saved if they are correlated with the earth's motions. I have no doubt that acute and learned astronomers will agree with me if, as this discipline especially requires, they are willing to examine and consider, not superficially but thoroughly, what I adduce in this volume in proof of these matters. However, in order that the educated and uneducated alike may see that I do not run away from the judgement of anybody at all, I have preferred dedicating my studies to Your Holiness rather than to anyone else. For even in this very remote corner of the earth where I live you are considered the highest authority by virtue of the loftiness of your office and your love for all literature and astronomy too. Hence by your prestige and judgement you can easily suppress calumnious attacks although, as the proverb has it, there is no remedy for a backbite. Perhaps there will be babblers who claim to be judges of astronomy although completely ignorant of the subject and, badly distorting some passage of Scripture to their purpose, will dare to find fault with my undertaking and censure it. I disregard them even to the extent of despising their criticism as unfounded. For it is not unknown that Lactantius, otherwise an illustrious writer but hardly an astronomer, speaks quite childishly about the earth's shape, when he mocks those who declared that the earth has the form of a globe. Hence scholars need not be surprised if any such persons will likewise ridicule me. Astronomy is written for astronomers. To them my work too will seem, unless I am mistaken, to make some contribution also to the Church, at the head of which Your Holiness now stands. For not so long ago under Leo X the Lateran Council considered the problem of reforming the ecclesiastical calendar. The issue remained undecided then only because the lengths of the year and month and the motions of the sun and moon were regarded as not yet adequately measured. From that time on, at the suggestion of that most distinguished man, Paul, bishop of Fossombrone, who was then in charge of this matter, I have directed my attention to a more precise study of these topics. But what I have accomplished in this regard, I leave to the judgement of Your Holiness in particular and of all other learned astronomers. And lest I appear to Your Holiness to promise more about the usefulness of this volume than I can fulfill, I now turn to the work itself. ## De Revolutionibus Book I # Chapter 5 #### Does Circular Motion Suit the Earth? What Is Its Position Now that the earth too has been shown to have the form of a sphere, we must in my opinion see whether also in this case the form entails the motion, and what place in the universe is occupied by the earth. Without the answers to these questions it is impossible to find the correct explanation of what is seen in the heavens. To be sure, there is general agreement among the authorities that the earth is at rest in the middle of the universe. They hold the contrary view to be inconceivable or downright silly. Nevertheless, if we examine the matter more carefully, we shall see that this problem has not yet been solved, and is therefore by no means to be disregarded. Every observed change of place is caused by a motion of either the observed object or the observer or, of course, by an unequal displacement of each. For when things move with equal speed in the same direction, the motion is not perceived. as between the observed object and the observer, I mean. It is the earth, however, from which the celestial ballet is beheld in its repeated performances before our eyes. Therefore, if any motion is ascribed to the earth, in all things outside it the same motion will appear, but in the opposite direction, as though they were moving past it. Such in particular is the daily rotation, since it seems to involve the entire universe except the earth and what is around it. However, if you grant that the heavens have no part in this motion but that the earth rotates from west to east, upon earnest consideration you will find that this is the actual situation concerning the apparent rising and setting of the sun, moon, stars and planets. Moreover since the heavens, which enclose and provide the setting for everything, constitute the space common to all things, it is not at first blush clear why motion should not be attributed rather to the enclosed than to the enclosing, to the thing located in space rather than to the framework of space. This opinion was indeed maintained by Heraclides and Ecphantus, the Pythagoreans, and by Hicetas of Syracuse, according to Cicero. They rotated the earth in the middle of the universe, for they ascribed the setting of the stars to the earth's interposition, and their rising to its withdrawal. If we assume its daily rotation, another and no less important question follows concerning the earth's position. To be sure, heretofore there has been virtually unanimous acceptance of the belief that the middle of the universe is the earth. Anyone who denies that the earth occupies the middle or center of the universe may nevertheless assert that its distance (therefrom) is insignificant in comparison with (the distance of) the sphere of the fixed stars, but perceptible and noteworthy in relation to the spheres of the sun and the other planets. He may deem this to be the reason why their motions appear nonuniform, as conforming to a center other than the center of the earth. Perhaps he can (thereby) produce a not inept explanation of the apparent nonuniform motion. For the fact that the same planets are observed nearer to the earth and farther away necessarily proves that the center of the earth is not the center of their circles. It is less clear whether the approach and withdrawal are executed by the earth or the planets. It will occasion no surprise if, in addition to the daily rotation, some other motion is assigned to the earth. That the earth rotates, that it also travels with several motions, and that it is one of the heavenly bodies are said to have been the opinions of Philolaus the Pythagorean. He was no ordinary astronomer, inasmuch as Plato did not delay going to Italy for the sake of visiting him, as Plato's biographers report. But many have thought it possible to prove by geometrical reasoning that the earth is in the middle of the universe; that being like a point in relation to the immense heavens, it serves as their center; and that it is motionless because, when the universe moves, the center remains unmoved, and the things nearest to the center are carried most slowly. ### Chapter 6 #### The Immensity of the Heavens Compared to the Size of the Earth The massive bulk of the earth does indeed shrink to insignificance in comparison with the size of the heavens. This can be ascertained from the fact that the boundary circles (for that is the translation of the Greek term horizons) bisect the entire sphere of the heavens. This could not happen if the earth's size or distance from the universe's center were noteworthy in comparison with the heavens. For, a circle that bisects a sphere passes through its center, and is the greatest circle that can be described on it. Thus, let circle ABCD be a horizon, and let the earth, from which we do our observing, be E, the center of the horizon, which separates what is seen from what is not seen. Now, through a dioptra or horoscopic instrument or water level placed at E, let the first point of the Crab be sighted rising at point C, and at that instant the first point of the Goat is perceived to be setting at A. Then A, E, and C are on a straight line through the dioptra. This line is evidently a diameter of the ecliptic, since six visible signs form a semicircle, and E, the (line's) center, is identical with the horizon's center. Again, let the signs shift their position until the first point of the Goat rises at B. At that time the Crab will also be observed setting at D. BED will be a straight line and a diameter of the ecliptic. But, as we have already seen, AEC also is a diameter of the same circle. Its center, obviously, is the intersection (of the diameters). A horizon, then, in this way always bisects the ecliptic, which is a great circle of the sphere. But on a sphere, if a circle bisects any great circle, the bisecting circle is itself a great circle. Consequently a horizon is one of the great circles, and its center is clearly identical with the center of the ecliptic. Yet a line drawn from the earth's surface (to a point in the firmament) must be distinct from the line drawn from the earth's center (to the same point). Nevertheless, because these lines are immense in relation to the earth, they become like parallel lines (III, 15). Because their terminus is enormously remote they appear to be a single line. For in comparison with their length the space enclosed by them becomes imperceptible, as is demonstrated in optics. This reasoning certainly makes it quite clear that the heavens are immense by comparison with the earth and present the aspect of an infinite magnitude, while on the testimony of the senses the earth is related to the heavens as a point to a body, and a finite to an infinite magnitude. But no other conclusion seems to have been established. For it does not follow that the earth must be at rest in the middle of the universe. Indeed, a rotation in twenty-four hours of the enormously vast universe should astonish us even more than a rotation of its least part, which is the earth. For, the argument that the center is motionless, and what is nearest the center moves the least, does not prove that the earth is at rest in the middle of the universe. To take a similar case, suppose you say that the heavens rotate but the poles are stationary, and what is closest to the poles moves the least. The Little Bear, for example, being very close to the pole, is observed to move much more slowly than the Eagle or the Little Dog because it describes a smaller circle. Yet all these constellations belong to a single sphere. A sphere's movement, vanishing at its axis, does not permit an equal motion of all its parts. Nevertheless these are brought round in equal times, though not over equal spaces, by the rotation of the whole sphere. The upshot of the argument, then, is the claim that the earth as a part of the celestial sphere shares in the same nature and movement so that, being close to the center, it has a slight motion. Therefore, being a body and not the center, it too will describe arcs like those of a celestial circle, though smaller, in the same time. The falsity of this contention is clearer than daylight. For it would always have to be noon in one place, and always midnight in another, so that the daily risings and settings could not take place, since the motion of the whole and the part would be one and inseparable. But things separated by the diversity of their situations are subject to a very different relation: those enclosed in a smaller orbit revolve faster than those traversing a bigger circle. Thus Saturn, the highest of the planets, revolves in thirty years; the moon, undoubtedly the nearest to the earth, completes its course in a month; and to close the series, it will be thought, the earth rotates in the period of a day and a night. Accordingly the same question about the daily rotation emerges again. On the other hand, likewise still undetermined is the earth's position, which has been made even less certain by what was said above. For that proof establishes no conclusion other than the heavens' unlimited size in relation to the earth. Yet how far this immensity extends is not at all clear. At the opposite extreme are the very tiny indivisible bodies called "atoms". Being imperceptible, they do not immediately constitute a visible body when they are taken two or a few at a time. But they can be multiplied to such an extent that in the end there are enough of them to combine in a perceptible magnitude. The same may be said also about the position of the earth. Although it is not in the center of the universe, nevertheless its distance therefrom is still insignificant, especially in relation to the sphere of the fixed stars. ## Chapter 7 #### Why the Ancients Thought that the Earth Remained at Rest in the Middle of the Universe as its Center Accordingly, the ancient philosophers sought to establish that the earth remains at rest in the middle of the universe by certain other arguments. As their main reason, however, they adduce heaviness and lightness. Earth is in fact the heaviest element, and everything that has weight is borne toward it in an effort to reach its inmost center. The earth being spherical, by their own nature heavy objects are carried to it from all directions at right angles to its surface. Hence, if they were not checked at its surface, they would collide at its center, since a straight line perpendicular to a horizontal plane at its point of tangency with a sphere leads to the (sphere's) center. But things brought to the middle, it seem to follow, come to rest at the middle. All the more, then, will the entire earth be at rest in the middle, and as the recipient of every falling body it will remain motionless thanks to its weight. In like manner, the ancient philosophers analyze motion and its nature in a further attempt to confirm their conclusion. Thus, according to Aristotle, the motion of a single simple body is simple; of the simple motions, one is straight and the other is circular; of the straight motions, one is upward and the other is downward. Hence every simple motion is either toward the middle, that is, downward; or away from the middle, that is, upward; or around the middle, that is, circular. To be carried downward, that is, to seek the middle, is a property only of earth and water, which are considered heavy; on the other hand, air and fire, which are endowed with lightness, move upward and away from the middle. To these four elements it seems reasonable to assign rectilinear motion, but to the heavenly bodies, circular motion around the middle. This is what Aristotle says (Heavens, I, 2; II, 14). Therefore, remarks Ptolemy of Alexandria (Syntaxis, 1, 7), if the earth were to move, merely in a daily rotation, the opposite of what was said above would have to occur, since a motion would have to be exceedingly violent and its speed unsurpassable to carry the entire circumference of the earth around in twenty-four hours. But things which undergo an abrupt rotation seem utterly unsuited to gather (bodies to themselves), and seem more likely, if they have been produced by combination, to fly apart unless they are held together by some bond. The earth would long ago have burst asunder, he says, and dropped out of the skies (a quite preposterous notion); and, what is more, living creatures and any other loose weights would by no means remain unshaken. Nor would objects falling in a straight line descend perpendicularly to their appointed place, which would meantime have been withdrawn by so rapid a movement. Moreover, clouds and anything else floating in the air would be seen drifting always westward. ### Chapter 8 #### The Inadequacy of the Previous Arguments and a Refutation of Them For these and similar reasons for sooth the ancients insist that the earth remains at rest in the middle of the universe, and that this is its status beyond any doubt. Yet if anyone believes that the earth rotates, surely he will hold that its motion is natural, not violent. But what is in accordance with nature produces effects contrary to those resulting from violence, since things to which force or violence is applied must disintegrate and cannot long endure. On the other hand, that which is brought into existence by nature is well-ordered and preserved in its best state. Ptolemy has no cause, then, to fear that the earth and everything earthly will be disrupted by a rotation created through nature's handiwork, which is quite different from what art or human intelligence can accomplish. But why does he not feel this apprehension even more for the universe, whose motion must be the swifter, the bigger the heavens are than the earth? Or have the heavens become immense because the indescribable violence of their motion drives them away from the center? Would they also fall apart if they came to a halt? Were this reasoning sound, surely the size of the heavens would likewise grow to infinity. For the higher they are driven by the power of their motion, the faster that motion will be, since the circumference of which it must make the circuit in the period of twenty-four hours is constantly expanding; and, in turn, as the velocity of the motion mounts, the vastness of the heavens is enlarged. In this way the speed will increase the size, and the size the speed, to infinity. Yet according to the familiar axiom of physics that the infinite cannot be traversed or moved in any way, the heavens will therefore necessarily remain stationary. But beyond the heavens there is said to be no body, no space, no void, absolutely nothing, so that there is nowhere the heavens can go. In that case it is really astonishing if something can be held in check by nothing. If the heavens are infinite, however, and finite at their inner concavity only, there will perhaps be more reason to believe that beyond the heavens there is nothing. For, every single thing, no matter what size it attains, will be inside them, but the heavens will abide motionless. For, the chief contention by which it is sought to prove that the universe is finite is its motion. Let us therefore leave the question whether the universe is finite or infinite to be discussed by the natural philosophers. We regard it as a certainty that the earth, enclosed between poles, is bounded by a spherical surface. Why then do we still hesitate to grant it the motion appropriate by nature to its form rather than attribute a movement to the entire universe, whose limit is unknown and unknowable? Why should we not admit, with regard to the daily rotation, that the appearance is in the heavens and the reality in the earth? This situation closely resembles what Vergil's Aeneas says: Forth from the harbor we sail, and the land and the cities slip backward (*Aeneid*, III, 72). For when a ship is floating calmly along, the sailors see its motion mirrored in everything outside, while on the other hand they suppose that they are stationary, together with everything on board. In the same way, the motion of the earth can unquestionably produce the impression that the entire universe is rotating. Then what about the clouds and the other things that hang in the air in any manner whatsoever, or the bodies that fall down, and conversely those that rise aloft? We would only say that not merely the earth and the watery element joined with it have this motion, but also no small part of the air and whatever is linked in the same way to the earth. The reason may be either that the nearby air, mingling with earthy or watery matter, conforms to the same nature as the earth, or that the air's motion, acquired from the earth by proximity, shares without resistance in its unceasing rotation. No less astonishingly, on the other hand, is the celestial movement declared to be accompanied by the uppermost belt of air. This is indicated by those bodies that appear suddenly, I mean, those that the Greeks called "comets" and "bearded stars". Like the other heavenly bodies, they rise and set. They are thought to be generated in that region. That part of the air, we can maintain, is unaffected by the earth's motion on account of its great distance from the earth. The air closest to the earth will accordingly seem to be still. And so will the things suspended in it, unless they are tossed to and fro, as indeed they are, by the wind or some other disturbance. For what else is the wind in the air but the wave in the sea? We must in fact avow that the motion of falling and rising bodies in the framework of the universe is twofold, being in every case a compound of straight and circular. For, things that sink of their own weight, being predominantly earthy, undoubtedly retain the same nature as the whole of which they are parts. Nor is the explanation different in the case of those things, which, being fiery, are driven forcibly upward. For also fire here on the earth feeds mainly on earthy matter, and flame is defined as nothing but blazing smoke. Now it is a property of fire to expand what it enters. It does this with such great force that it cannot be prevented in any way by any device from bursting through restraints and completing its work. But the motion of expansion is directed from the center to the circumference. Therefore, if any part of the earth is set afire, it is carried from the middle upwards. Hence the statement that the motion of a simple body is simple holds true in particular for circular motion, as long as the simple body abides in its natural place and with its whole. For when it is in place, it has none but circular motion, which remains wholly within itself like a body at rest. Rectilinear motion, however, affects things which leave their natural place or are thrust out of it or quit it in any manner whatsoever. Yet nothing is so incompatible with the orderly arrangement of the universe and the design of the totality as something out of place. Therefore rectilinear motion occurs only to things that are not in proper condition and are not in complete accord with their nature, when they are separated from their whole and forsake its unity. Furthermore, bodies that are carried upward and downward, even when deprived of circular motion, do not execute a simple, constant, and uniform motion. For they cannot be governed by their lightness or by the impetus of their weight. Whatever falls moves slowly at first but increases its speed as it drops. On the other hand, we see this earthly fire (for we behold no other), after it has been lifted up high, slacken all at once, thereby revealing the reason to be the violence applied to the earthy matter. Circular motion, however, always rolls along uniformly, since it has an unfailing cause. But rectilinear motion has a cause that quickly stops functioning. For when rectilinear motion brings bodies to their own place, they cease to be heavy or light, and their motion ends. Hence, since circular motion belongs to wholes, but parts have rectilinear motion in addition, we can say that "circular" subsists with "rectilinear" as "being alive" with "being sick". Surely Aristotle's division of simple motion into three types, away from the middle, toward the middle, and around the middle, will be construed merely as a logical exercise. In like manner we distinguish line, point, and surface, even though one cannot exist without another, and none of them without body. As a quality, moreover, immobility is deemed nobler and more divine than change and instability, which are therefore better suited to the earth than to the universe. Besides, it would seem quite absurd to attribute motion to the framework of space or that which encloses the whole of space, and not, more appropriately, to that which is enclosed and occupies some space, namely, the earth. Last of all, the planets obviously approach closer to the earth and recede farther from it. Then the motion of a single body around the middle, which is thought to be the center of the earth, will be both away from the middle and also toward it. Motion around the middle, consequently, must be interpreted in a more general way, the sufficient condition being that each such motion encircle its own center. You see, then, that all these arguments make it more likely that the earth moves than that it is at rest. This is especially true of the daily rotation, as particularly appropriate to the earth. This is enough, in my opinion, about the first part of the question. ## Chapter 9 # Can Several Motions be Attributed to the Earth? The Center of the Universe Accordingly, since nothing prevents the earth from moving, I suggest that we should now consider also whether several motions suit it, so that it can be regarded as one of the planets. For, it is not the center of all the revolutions. This is indicated by the planets' apparent nonuniform motion and their varying distances from the earth. These phenomena cannot be explained by circles concentric with the earth. Therefore, since there are many centers, it will not be by accident that the further question arises whether the center of the universe is identical with the center of terrestrial gravity or with some other point. For my part I believe that gravity is nothing but a certain natural desire, which the divine providence of the Creator of all things has implanted in parts, to gather as a unity and a whole by combining in the form of a globe. This impulse is present, we may suppose, also in the sun, the moon, and the other brilliant planets, so that through its operation they remain in that spherical shape which they display. Nevertheless, they swing round their circuits in divers ways. If, then, the earth too moves in other ways, for example, about a center, its additional motions must likewise be reflected in many bodies outside it. Among these motions we find the yearly revolution. For if this is transformed from a solar to a terrestrial movement, with the sun acknowledged to be at rest, the risings and settings which bring the zodiacal signs and fixed stars into view morning and evening will appear in the same way. The stations of the planets, moreover, as well as their retrogradations and (resumptions of) forward motion will be recognized as being, not movements of the planets, but a motion of the earth, which the planets borrow for their own appearances. Lastly, it will be realized that the sun occupies the middle of the universe. All these facts are disclosed to us by the principle governing the order in which the planets follow one another, and by the harmony of the entire universe, if only we look at the matter, as the saying goes, with both eyes. ### Chapter 10 #### The Order of the Heavenly Spheres Of all things visible, the highest is the heaven of the fixed stars. This, I see, is doubted by nobody. But the ancient philosophers wanted to arrange the planets in accordance with the duration of the revolutions. Their principle assumes that of objects moving equally fast, those farther away seem to travel more slowly, as is proved in Euclid's *Optics*. The moon revolves in the shortest period of time because, in their opinion, it runs on the smallest circle as the nearest to the earth. The highest planet, on the other hand, is Saturn, which completes the biggest circuit in the longest time. Below it is Jupiter, followed by Mars. With regard to Venus and Mercury, however, differences of opinion are found. For, these planets do not pass through every elongation from the sun, as the other planets do. Hence Venus and Mercury are located above the sun by some authorities, like Plato's *Timaeus* (38 D), but below the sun by others, like Ptolemy (*Syntaxis*, IX, 1) and many of the moderns. Al-Bitruji places Venus above the sun, and Mercury below it. According to Plato's followers, all the planets, being dark bodies otherwise, shine because they receive sunlight. If they were below the sun, therefore, they would undergo no great elongation from it, and hence they would be seen halved or at any rate less than fully round. For, the light which they receive would be reflected mostly upward, that is, toward the sun, as we see in the new or dying moon. In addition, they argue, the sun must sometimes be eclipsed by the interposition of these planets, and its light cut off in proportion to their size. Since this is never observed, these planets do not pass beneath the sun at all, according to those who follow Plato. On the other hand, those who locate Venus and Mercury below the sun base their reasoning on the wide space which they notice between the sun and the moon. For the moon's greatest distance from the earth is 64 1/6 earth-radii. This is contained, according to them, about 18 times in the sun's least distance from the earth, which is 1160 earth-radii. Therefore between the sun and the moon there are 1096 earth-radii (1160 - 64 1/6). Consequently, to avoid having so vast a space remain empty, they announce that the same numbers almost exactly fill up the apsidal distances,² by which they compute the thickness of those spheres. Thus the moon's apogee is followed by Mercury's perigee. Mercury's apogee is succeeded by the perigee of Venus, whose apogee, finally, almost reaches the sun's perigee. For between the apsides of Mercury they calculate about 177 1/2 earthradii. Then the remaining space is very nearly filled by Venus' interval of 910 earth-radii. Therefore they do not admit that these heavenly bodies have any opacity like the moon's. On the contrary, these shine either with their own light or with the sunlight absorbed throughout their bodies. Moreover, they do not eclipse the sun, because it rarely happens that they interfere with our view of the sun, since they generally deviate in latitude. Besides, they are tiny bodies in comparison with the sun. Venus, although bigger than Mercury, can occult barely a hundredth of the sun. So says Al-Battani of Raqqa, who thinks that the sun's diameter is ten times larger (than Venus'), and therefore so minute a speck is not easily descried in the most brilliant light. Yet in his Paraphrase of Ptolemy, Ibn Rushd reports having seen something blackish when he found a conjunction of the sun and Mercury indicated in the tables. And thus these two planets are judged to be moving below the sun's sphere. But this reasoning also is weak and unreliable. This is obvious from the fact that there are 38 earth-radii to the moon's perigee, according to Ptolemy (Syntaxis, V, 13), but more than 49 according to a more accurate determination, as will be made clear below. Yet so great a space contains, as we know, nothing but air and, if you please, also what is called "the element of fire". Moreover, the diameter of Venus' epicycle which carries it 45° more or less to either side of the sun, must be six times longer than the line drawn from the earth's center to Venus' perigee, as will be demonstrated in the proper place (V, 21). In this entire space which would be taken up by that huge epicycle of Venus and which, moreover, is so much bigger than what would accommodate the earth, air, aether, moon, and Mercury, what will they say is contained if Venus revolved around a motionless earth? Ptolemy (*Syntaxis*, IX, 1) argues also that the sun must move in the middle between the planets which show every elongation from it and those which do not. This argument carries no conviction because its error is revealed by the fact that the moon too shows every elongation from the sun. Now there are those who locate Venus and then Mercury below the sun, or separate these planets (from the sun) in some other sequence. What reason will they adduce to explain why Venus and Mercury do not likewise traverse separate orbits divergent from the sun, like the other planets, without violating the arrangement (of the planets) in accordance with their (relative) swiftness and slowness? Then one of two alternatives will have to be true. Either the earth is not the center to which the order of the planets and spheres is referred, or there really is no ^{2.} The apsides are the perigees and apogees, i.e. the points on a circle nearest and farthest from the earth. principle of arrangement nor any apparent reason why the highest place belongs to Saturn rather than to Jupiter or any other planet. In my judgement, therefore, we should not in the least disregard what was familiar to Martianus Capella, the author of an encyclopedia, and to certain other Latin writers. For according to them, Venus and Mercury revolve around the sun as their center. This is the reason, in their opinion, why these planets diverge no farther from the sun than is permitted by the curvature of their revolutions. For they do not encircle the earth, like the other planets, but "have opposite circles". Then what else do these authors mean but that the center of their spheres is near the sun? Thus Mercury's sphere will surely be enclosed within Venus', which by common consent is more than twice as big, and inside that wide region it will occupy a space adequate for itself. If anyone seizes this opportunity to link Saturn, Jupiter, and Mars also to that center, provided he understands their spheres to be so large that together with Venus and Mercury the earth too is enclosed inside and encircled, he will not be mistaken, as is shown by the regular pattern of their motions. For (these outer planets) are always closest to the earth, as is well known, about the time of their evening rising, that is, when they are in opposition to the sun, with the earth between them and the sun. On the other hand, they are at their farthest from the earth at the time of their evening setting, when they become invisible in the vicinity of the sun, namely, when we have the sun between them and the earth. These facts are enough to show that their center belongs more to the sun, and is identical with the center around which Venus and Mercury likewise execute their revolutions. But since all these planets are related to a single center, the space between Venus' convex sphere and Mars' concave sphere must be set apart as also a sphere or spherical shell, both of whose surfaces are concentric with those spheres. This (intercalated sphere) receives the earth together with its attendant, the moon, and whatever is contained within the moon's sphere. Mainly for the reason that in this space we find quite an appropriate and adequate place for the moon, we can by no means detach it from the earth, since it is incontrovertibly nearest to the earth. Hence I feel no shame in asserting that this whole region engirdled by the moon, and the center of the earth, traverse this grand circle amid the rest of the planets in an annual revolution around the sun. Near the sun is the center of the universe. Moreover, since the sun remains stationary, whatever appears as a motion of the sun is really due rather to the motion of the earth. In comparison with any other spheres of the planets, the distance from the earth to the sun has a magnitude which is quite appreciable in proportion to those dimensions. But the size of the universe is so great that the distance earth-sun is imperceptible in relation to the sphere of the fixed stars. This should be admitted, I believe, in preference to perplexing the mind with an almost infinite multitude of spheres, as must be done by those who kept the earth in the middle of the universe. On the contrary, we should rather heed the wisdom of nature. Just as it especially avoids producing anything superfluous or useless, so it frequently prefers to endow a single thing with many effects. All these statements are difficult and almost inconceivable, being of course opposed to the beliefs of many people. Yet, as we proceed, with God's help I shall make them clearer than sunlight, at any rate to those who are not unacquainted with the science of astronomy. Consequently, with the first principle remaining intact, for nobody will propound a more suitable principle than that the size of the spheres is measured by the length of the time, the order of the spheres is the following, beginning with the highest. The first and the highest of all is the sphere of the fixed stars, which contains itself and everything, and is therefore immovable. It is unquestionably the place of the universe, to which the motion and position of all the other heavenly bodies are compared. Some people think that it also shifts in some way. A different explanation of why this appears to be so will be adduced in my discussion of the earth's motion (I, 11). (The sphere of the fixed stars) is followed by the first of the planets, Saturn, which completes its circuit in 30 years. After Saturn, Jupiter accomplishes its revolution in 12 years. Then Mars revolves in 2 years. The annual revolution takes the series' fourth place, which contains the earth, as I said (earlier in I, 10), together with the lunar sphere as an epicycle. In the fifth place Venus returns in 9 months. Lastly, the sixth place is held by Mercury, which revolves in a period of 80 days. At rest, however, in the middle of everything is the sun. For in this most beautiful temple, who would place this lamp in another or better position than that from which it can light up the whole thing at the same time? For, the sun is not inappropriately called by some people the lantern of the universe, its mind by others, and its ruler by still others. (Hermes) the Thrice Greatest labels it a visible god, and Sophocles' Electra, the all-seeing. Thus indeed, as though seated on a royal throne, the sun governs the family of planets revolving around it. Moreover, the earth is not deprived of the moon's attendance. On the contrary, as Aristotle says in a work on animals, the moon has the closest kinship with the earth. Meanwhile the earth has intercourse with the sun, and is impregnated for its yearly parturition. In this arrangement, therefore, we discover a marvelous symmetry of the universe, and an established harmonious linkage between the motion of the spheres and their size, such as can be found in no other way. For this permits a not inattentive student to perceive why the forward and backward arcs appear greater in Jupiter than in Saturn and smaller than in Mars, and on the other hand greater in Venus than in Mercury. This reversal in direction appears more frequently in Saturn than in Jupiter, and also more rarely in Mars and Venus than in Mercury. Moreover, when Saturn, Jupiter, and Mars rise at sunset, they are nearer to the earth than when they set in the evening or appear at a later hour. But Mars in particular, when it shines all night, seems to equal Jupiter in size, being distinguished only by its reddish color. Yet in the other configurations it is found barely among the stars of the second magnitude, being recognized by those who track it with assiduous observations. All these phenomena proceed from the same cause, which is in the earth's motion. Yet none of these phenomena appears in the fixed stars. This proves their immense height, which makes even the sphere of the annual motion, or its reflection, vanish from before our eyes. For, every visible object has some measure of distance beyond which it is no longer seen, as is demonstrated in optics. From Saturn, the highest of the planets, to the sphere of the fixed stars there is an additional gap of the largest size. This is shown by the twinkling lights of the stars. By this token in particular they are distinguished from the planets, for there had to be a very great difference between what moves and what does not move. So vast, without any question, is the divine handiwork of the most excellent Almighty.