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Preface

A new English translation of the Almagest needs no apology. As one of the most
influential scientific works in history, and a masterpiece of technical exposition
in its own right, it deserves a much wider audience than can be found amongst
those able to read it in the original. The existing English translation by R.
Catesby Taliaferro," besides being difficult to acquire, is such that silence is the

kindest comment one can make. The French translation by N. Halma, virtually -

unobtainable, suffers from excessive literalness, particularly where the text is
difficult. The other modern version, Karl Manitius’ German translation, is on
an entirely different level from these. It was done by a man who had studied the
text and made a strenuous and on the whole successful effort to understand
Ptolemy’s meaning and methods. I have used it constantly for twenty years, and
those to whom it is familiar will recognise how much I owe to it. Nevertheless, it
is not free from mistakes, and, to my taste, errs in the direction of paraphrasing
where it should be translating. Most important, one can no lohger assume that
those with a serious interest in history are able to read German with ease. I have
been able to improve on Manitius’ translation, in part because of work
published since he made it, in part because I had independent access to much of
the textual evidence. notably the mediaeval Arabic translations. I have drawn
attention to a few passages where I have noticed that he is in error, but I have
made no svstematic comparison between my translation and his or any other
version.

Every translator, and especially one dealing with an ancient language, is
confronted with the dilemma of being faithful to the original and at the
same time comprehensible to his readers. My intention was that this trans-
lation should serve both those who know no Greek, as a substitute for the
text, and those who do, as an aid to reading it. This has inevitably led to
compromises. On the whole, I have kept closely to the meaning and structure of
the Greek, even, on occasion, where this entailed abandoning idiomatic
English. But I have usually broken up Ptolemy’s enormously long sentences
(characteristic of Hellenistic scientific prose) into shorter units more suitable for
English, and I have frequently substituted mathematical symbols (=, + etc.} and
a symmetric presentation for the continuous rhetorical exposition of the ancient
text. I have been liberal with explanatory additions, which are marked as such

by enclosure within square brackets. Wherever the need to be intelligible forced

me to a paraphrase, I give the literal translation in a footnote.

It would have made what is an already big book impossibly unwieldy if I had‘

!For full references here and elsewhere see the Bibliography.



viii Preface

provided a full technical and historical commentary on the Almagest.
Fortunately two recent works, by Neugebauer (H4AMA) and Pedersen, are
excellent guides to the technical content, and the former is also of considerable
help on the numerous historical problems which arise from it. I have therefore
confined my own commentary to footnotes on points of detail (referring to the
above works for expository treatments), and to an introduction giving the
minimum of information necessary to understand and use the translation.

In the course of making the translation I recomputed all the numerical results
in the text, and all the tables (the latter mostly by means of computer
programs). The main purpose of this was to detect scribal errors (in which I
have been moderately successful). But my calculations incidentally revealed a
number of computing errors or distortions committed by Ptolemy himself.
Where these are explicable as the result of rounding in the course of
computation they are ignored, since to list some thousands of slightly more
accurate results which I have found with modern mechanical aids would invite
Ptolemy’s own sardonic remark: ‘Scrupulous accuracy about such a small
amount is a sign of vain conceit rather than love of truth’. However, I have
noted every computing error of a significant amount, and also those cases where
the rounding errors are not random, but seem directed towards obtaining some
‘neat’ result. I hope that this will shed some light on the problem of Ptolemy’s
manipulation of his material (both computational and observational) in order
to present an appearance of rigor in his theoretical treatment which he could
never have found in his actual experience. The problem is an interesting one,
which deserves an informed and critical discussion. Unfortunately. the recent
book on this subject by R. R. Newton provides nothing of the kind. but rather
tends to bring the whole topic into disrepute. The only detailed discussion
which is usetul is that by Britton [1].* This, however, is confined to certain
classes of the observations. My own inferences from the computations tend to
confirm Britton's conclusions about the nature and purpose of Ptolemy’s
manipulations of his data.

This book owes much to the help of numerous people and institutions, which
I gratefully acknowledge here. The Bibliothéque Nationale, Paris, the
Biblioteca Apostolica Vaticana and the Biblioteca de El Escorial provided me
with microfilms of various Greek and Arabic manuscripts of the Almagest
(detailed on pp. 3-4). I thank my colleague, David Pingree, Prot. Dr. Fuat
Sezgin and Prof. Dr. Paul Kunitzsch for providing me with other microfilms
and photocopies which I needed. Mr. Colin Haycraft not only gave me the
necessary encouragement actually to embark on a project which I had been
contemplating for a long time, but also bore patiently with the repeated delays
until the book was ready for publication. When B. R. Goldstein, who was
already engaged in preparing an English version of the Almagest, heard that I
had decided to make this translation, he generously abandoned the project and
turned over his materials to me. I owe to these and to him several ideas about
format and notation. My pupil, Don Edwards, detected a number of slips and

*It is regrettable that this has never heen formally published. It is available in Xerox copy from
University Microfilms International, Ann Arbor, Michigan 48106.
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typing errors in my preliminary version, and performed many useful services in
comparing the translation with the Greek text. Michele Wilson drew Fig. F for
me. Janet Sachs provided invaluable help in preparing the typescript for
publication and eliminating numerous mistakes. Several of my footnotes on
difficult problems have been influenced by my discussions with Noel Swerdlow.
Rather than trying to disentangle his contribution at each place, I here record,
with thanks, the stimulus he has given to my thinking. N. G. Wilson answered
my questions on points of Greek palaeography and went out of his way to
examine manuscripts at my request. My colleague, A. J. Sachs, gave me the
benefit of his unrivalled expertise on several points of Babylonian astronomy
and Mesopotamian history. To my colleague O. Neugebauer Lowe more than I
can express here. Let me say only that it was he who first introduced me to the
Almagest more than twenty years ago, that his own investigations of it (only
part of which have been published in his monumental A History of Anctent
Mathematical Astronomy) have been invaluable to me as an aid and as a model,
and that many will recognize his draughtsmanship in several of the supple-
mentary diagrams. As an inadequate token I dedicate this book to him.

Providence, 1982 G.J.T.






Introduction

1. Ptolemy

For a detailed discussion of what little is known of the life of the author of the
Almagest, and an account of his numerous other works, on astronomy,

astrology, geography, optics and other mathematical subjects, I refer the reader

to my article in the Dictionary of Scientific Biography (Toomer [5]). Here I
mention only that his name was Claudius Ptolemaeus (KAa6diog [Trolepaiog),
that he lived from approximately A.D. 100 to approximately A.D. 175, and that
he worked in Alexandria. the principal city of Greco-Roman Egypt, which
possessed, among other advantages, what was probably still the best library in
the ancient world.

2. The Almagest

The Almagest is firmly dated to the reign of the Roman emperor Antoninus
(A.D. 138-161). The latest observation used initis from 141 February 2 (IX 7 p.
450), and Ptolemy takes the beginning of the reign of Antoninus as the epoch of
his star catalogue (VII 4 p. 340). Although it is clear that Ptolemy had spent
much time on it and that it is a work of his maturity (his own observations
recorded in it range from A.D. 127 to 141), it has always been considered as his
earliest extant work, because of the changes from it and references back to it in
other works by him (for details see Toomer [5] p. 187). However, a recent
discovery by Norman T. Hamilton (see IV n.51 p. 205) has shown that the
‘Canobic Inscription’ represents a stage in the development of Ptolemy’s
astronomical theory earlier than the Almagest. Since Ptolemy erected that
dedication in the tenth yvear of Antoninus (A.D. 146/7), the Almagest can hardly
have been published earlier than the year 150.

As is implied by its Greek name, paOnuatixn ovvtagig, ‘mathematical
systematic treatise’, the Almagest is a complete exposition of mathematical
astronomy as the Greeks understood the term. Whether there were any
comparable works (i.e. comprehensive astronomical treatises) before it is not
known. In any case, its success contributed to the loss of most of the work of

Ptolemy’s scientific predecessors, notably Hipparchus, by the end of aﬁtiquity, .
because, being obsolete, they ceased to be copied. Whereas Hipparchus’ works .

are still used by Ptolemy’s younger contemporaries, Galen and Vettius Valens,'

'E.g. Galen, On Seven-month Children, ed. Walzer 347, 350; Commentary on Hippocrates® dirs
Waters and Places (see GAS VI 98). Vettius Valens, Anthologiar 354.




2 Introduction: History of the Almagest

by the early fourth century (and probably much earlier),? when Pappus wrote
his commentary on it, the Almagest had become the standard textbook on
astronomy which it was to remain for more than a thousand years. Thus its
importance for us lies not only in its value as a historical source for earlier
theories and observations, but also, and perhaps chiefly, in its influence on all
later astronomy in antiquity and the middle ages (in both Islamic and Christian
areas) down to the sixteenth century. It was dominant to an extent and for a
length of time which is unsurpassed by any scientific work except Euclid’s
Elements.

No attempt can be made here to sketch even an outline of the history of its
influence.? I mention only some points to which I will make reference in the
notes to the translation. The position of the Almagest as the standard textbook
in astronomy for ‘advanced students’ in the schools at Alexandria (and no
doubt at Athens and Antioch t0o) in late antiquity is amply demonstrated by
the partially extant commentaries on it by Pappus (c. 320) and by Theon of
Alexandria (¢. 370). In the late eighth and ninth centuries, with the growth of
interest in Greek science in the Islamic world, the Almagest was translated, first
into Syriac, then, several times, into Arabic. In the middle of the twelfth
century no less than five such versions weresstill available to the amateur ibn as-
Salah: a Syriac translation, two versions made under the Caliph al-Ma’min
(an older one by al-Hasan ibn Quraysh, and one dated 827/8 by al-Haj}jzj), a
version by the famous translator Ishaq ibn Hunayn (c. 879-90), and a revision of’
the latter by Thabit ibn Qurra (d. 901).* Two of these translations are still
extant, those of al-Hajjaj and Ishaq-Thabit. In them we find the title of
Ptolemy’s treatise given as ‘al-mjsty’ (consonantal skeleton only). This is
undoubtedly derived (ultimately) from a Greek form peyiotn (sc. oOvtagig),
meaning ‘greatest [treatise]’, but it is only later that it was incorrectly vocalised
as al-majasti, whence are derived the mediaeval Latin "almagesti’, ‘alma-
gestum’, the ancestors of the modern title ‘Almagest’. The available evidence
has been assembled and discussed by Kunitzsch, Der Almagest 115-25, where he
makes a good case for supposing that the Arabic form was derived, not directly
from the Greek, but from a middle Persian (Pahlavi) translation of the
Almagest. There is independent evidence for the existence of the latter, but
whether it was made as early as the reign of the Sassanid king Shahpuhr I (241-
272), as later Persian accounts maintain, seems very dubious to me.

While Ptolemy’s work in the original Greek continued to be copied and
studied in the eastern (Byzantine) empire, all knowledge of it was lost to western

2The evidence for the practice of astronomy in the third century is pitifully small, but there exists
a fragment of a text from about A.D.213 which isclosely related to the Almagest (see A.1.11.1 11 948-
49). and there are several third-century papyri related to the Handy Tables (ibid. 974-75, 979-80).
P. Ryl. 27 (written c. 260) quotes Ptolemy's solstice and equinox observations from Almagest I1I 1,
and in the late third century Porphyry (Comm. on Harmonica 2, p. 24,15 fI.) quotes Almagest 12 (H9,
11-16). The only evidence I have seen for knowledge of the Almagest in the second century, Galen,
Commentary on Hippocrates’ Airs Waters and Places 111 (ms. Cairo, Tal‘at tibb 550, p. 73a), where
Ptolemy is mentioned at the end of a list of authorities on astronomy, must be an interpolation in the
Arabic tradition, since Ptolemy is there characterized as ‘the king of Egypt’.

*1 know of no satisfactory account of this. I gave a very brief sketch, Toomer{5) 202.

*For a full account of this see Kunitzsch, Der Almagest, especially 15-71. Kunitzsch has also
published the work of ibn as-Saldh (see Bibliography).
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Europe by the early middle ages. Although translations from the Greek text
into Latin were made in mediaeval times,® the principal channel for the
recovery of the Almagest in the west was the translation from the Arabic by .
Gerard of Cremona, made at Toledo and completed in 1175.® Manuscripts of
the Greek text began to reach the west in the fifteenth century, but it was
Gerard’s text which underlay (often at several removes) books on astronomy as
late as the Peurbach-Regiomontanus epitome of the Almagest (see Biblio-
graphy under Regiomontanus). It was also the version in which the Almagest
was first printed (Venice, 1515). The sixteenth century saw the wide
dissemination of the Greek text (printed at Basel by Hervagius, 1538), and also
the obsolescence of Ptolemy’s astronomical system, brought about not so much
by the work of Copernicus (whichin form and concepts is still dominated by the
Almagest), as by that of Brahe and Kepler.

3. The translation

The basis of my translation is the Greek text established by Heiberg. 1 have,
however, found it necessary to make several hundred corrections to that text.
These are noted at the places in the translation where they occur,’” and are also
listed in Appendix B. In many cases (usually involving numerical computa-
tions), my correction consists of adopting the reading of the manuscript D.
unjustly spurned by Heiberg as descended from an archetype due to an
Alexandrian recension in late antiquity (Prolegomena, in Ptolemy. Opera
Minora CXXVI-VII). Whatever the truth about that, and despite the fact that
D itself is, as Heiberg says. ‘most negligently written’. I am convinced on
grounds of internal consistency that it represents a sounder tradition than that
of the mss. ABC, generally preferred by Heiberg. In many cases its obviously
correct readings are shared by all or part of the Arabic tradition. Nevertheless, I
have not deviated from Heiberg’s text except where it seemed essential for sense
or numerical consistency. In making corrections I have referred to photographs
of the following manuscripts. .
Greek (I use Heiberg’s notation)

Parisinus graecus 2389. Mainly uncial, ninth century

Vaticanus graecus 1594. Minuscule, ninth century

Vaticanus graecus 180. Several hands, but not, as Heiberg, 4/magest 1 p. V,

of the twelfth century, but rather of the tenth: see the Vatican Catalogue

by Mercati and Franchi de’ Cavaliert, I p. 206. N. G. Wilson has

confirmed this dating for me by personal inspection. (Heiberg himself

seems to have changed his opinion later: see Prolegomena LXXIX.)
Arabic (I have used the abbreviations ‘Ar’ to refer to the consensus of the

v

ow>

3See Haskins, Studies 103-112, 157-165.

®Kunitzsch, Der 4imagest 83-112, gives a valuable account of the evidence for this, and of
Gerard’s method of work: evidently he used more than one of the Arabic translations.

’I have acknowledged there all cases known to me where my correction has been anticipated by
others, notably Manitius.
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Arabic tradition, and ‘Is’ to the consensus of the mss. containing the Ishag-

Thabit version).

L  Leiden, or. 680. Eleventh century according to Kunitzsch, Der Almagest 38.
This is the only surviving manuscript of the version of al-Hajjaj.

T  Tunis, Bibliothéque Nationale, 07116 (see Kunitzsch, Der Almagest 38-40).
Completed October 1085. The Ishaq-Thabit version, complete.

P Paris, B.N. ar. 2482. Completed December 1221. See Kunitzsch, Der
Almagest 42-3. The Ishaq-Thabit version, Books I-VI 13.

Q Paris, B.N. ar. 2483. Fifteenth century. See Kunitzsch, Der Almagest 43.
The Ishaq-Thabit version, Books I-VII.

E  Escorial 914. See Kunitzsch, Der Almagest 43-4. The Ishaq-Thabit version,
Books V-IX.

F  Escorial 915. Completed September 1276. See Kunitzsch, Der 4{magest
44-5. The Ishaq-Thabit version, allegedly containing Books VII-XIII,
but in fact lacking large sections even of these, and bound in such disorder
as to be almost useless.

Ger The Latin translation of Gerard of Cremona, for which I have used only
the printed edition (Venice, Liechtenstein, 1515). For the complex
dependence of this on the various Arabic versions see Kunitzsch, Der
Almagest 97-104.

I did not undertake a complete collation of any of the above mss. For the
Greek mss. that would have been largely useless, since Heiberg’s reports are, as
in all his editions, very accurate (to judge from my sporadic verifications; I
remarked the rare exceptions in the notes to the translation). To collate the
Arabic translation would have delayed this book for several years, with no
commensurate gain. I have consulted the above mss. only in passages where 1
already considered Heiberg’s text wrong or suspect. Therefore no conclusions
should be drawn about the readings of the Arabic mss. where I do not explicitly
report them.

There are a number of places where, if I were to establish a Greek text, it
would differ from Heiberg’s, but which I have not bothered to record in this
book. Examples are:

mere orthography:

nupicxopev for ebpioxopev (imperfect) I 327,15
Kariinrog for Kamrog 1199,5

dueTdnerioTOV for aueramatov 16,18 (cf. Boll, Studien 74)
xpikog for kpikog 1196,8

changes in form not affecting the sense: &iv for ¢dv 1 393,11
reversals of letters referring to figures: ZK for KZ I 243, 22
obvious misprints:
GEAVIG A for onArivng I 406,25
dvopaiiag for dpopairiog I 462,19
(less obvious misprints, particularly those involving numbers, are recorded).

During the course of making the translation, I became convinced that the
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text contains quite a large number of interpolations, which must go back to
antiquity, since they are in the whole manuscript tradition, both Greek and
Arabic. I was first led to this conclusion by the discovery that there are places in
the text, nonsensical as they stand, which can be made to yield perfect sense by
the simple elimination of a clause or sentence, which must have been inserted as
‘explanation’ by someone who failed to understand Ptolemy’s meaning. A
notable example is V 1 (see p. 219 n.5). Cf also V 12, p. 245 with n.41. I later
realised that there are whole classes of textual matter which must also be
regarded as interpolations. One of these is the totals in the star catalogue (see pp.
16-17). The other is the chapter headings. Some of these (e.g. IX 2) are so inept as
descriptions of the actual content of the chapter that it is impossible to attribute
them to Ptolemy. In fact I do not believe that Ptolemy himselfused any chapter
divisions at all. It is obvious that he is responsible for the division into 13 books,
both from the summaries that are found at the beginning of most books, and .
from explicit references such as ‘in Book I' (8v & mp@to tfig ouvrdtews, 111 p.
75) and ‘in the preceding book’ (Ev T® npd tovtwV GuvTaypatt, VI 5 p. 283).
But he never refers to a chapter division. Furthermore, there is some
discrepancy in the manuscript tradition (especially between the branch
represented by D and that represented by A) as to the points of division between
chapters (e.g. at the beginning of Book III), and it is clear from Pappus’
commentary that although a division into chapters already existed in his time,
it was very different, at least in Book V,, from the present division.® If the chapter
division and headings are spurious, so too must be the table of contents
preceding each book. Nevertheless, since this method of subdividing the text is
useful for reference purposes, and appears in all editions, I have retained it,
merely marking the character of the chapter headings by enclosing them in
brackets thus: { }.

4. What is in the Almagest, and what is not

The order of treatment of topics in the Almagest (outlined in I 2) is completely
logical. In Book I, after a brief treatment of the nature of the universe (in o far
as it concerns the astronomer), Ptolemy develops the trigonometrical theory
necessary for the work as a whole. In Book II he discusses those aspects of
spherical astronomy which are related to the observer’s position on earth (rising-
times, length of daylight, etc.). Book III is devoted to the theory of the sun. This
is a.necessary preliminary for the treatment of the moon in Book IV, since the
use of lunar eclipses there depends on one’s ability to calculate the solar
position. Book V treats the advanced lunar theory, which is a refinement of that
in Book IV, and also lunar and solar parallax. Book VI is on eclipses, and thus
requires a knowledge of both solar and lunar theory, and also of parallax. Books
VII and VIII treat the fixed stars: since the moon is used as a ‘marker’ to
determine the position of some crucial fixed stars, lunar theory must precede
this, and since some planetary observations are made with respect to fixed stars,

%See the note in Rome{1] I p. 106, and cf. (for Theon) II p. 448 n. (1).
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the establishment of a star catalogue (VII 5 and VIII 1) must precede the
planetary theory. The last five books are devoted to the planets. Books IX-X1
develop the theory of their longitudinal motion, Book XII treats retrograda-
tions and greatest elongations (which depend only on longitude), while Book
XIII deals with planetary latitude and those phenomena (the ‘phases’) which
are partially dependent on it. Ptolemy occasionally anticipates later results for
the sake of convenience (see IV 3 p. 179 and IX 3 p. 423, where the mean motion
tables of moon and planets incorporate some later corrections), but in general
the order of presentation, within books as well as in the treatise as a whole, is
dictated by the logic of the didactic method.

There are, however, certain topics which Ptolemy does not discuss either
because he takes it for granted that they are already known to his readers, or
because it seemed superfluous to go into details (here I am referring especially to
chronological matters). He says specifically (I 1 p. 37 with n.13) that the work
is for “those who have already made some progress in the field’. This means, in
practice, that he assumes a knowledge of elementary geometry (‘Euclid’) and
“logistic’ (thus he does not consider it necessary to explain how to extract a
square root)}, and also of ‘spherics’. The latter is illustrated by the extant works
of Autolycus, Euclid (Phaenomena) and Theodosius (Sphaerica), which deal with
the phenomena arising from the rotation of stars and sun about a central,
spherical earth, e.g. their risings, settings, first and last visibilities, periods of
invisibility etc., using elementary geometry, but arriving mainly at qualitative
rather than quantitative results.” These results are mostly irrelevant to
Ptolemy’s work, but he does use much of the terminology and concepts of
spherics without explanation.

5. WWhat the reader of the Almagest needs to know

The modern reader, too, is likely to be familiar with elementary geometry. Sol
have not burdened the translation with references to Euclid except where the
theorems assumed are not immediately obvious. However, in what follows I
give a brief explanation of methods, concepts and facts not explained by
Ptolemy which the reader of the Almagest needs to know, but which mayv be less
familiar. On Ptolemy’s mathematical methods in general one may profitably
consult Pedersen 47-56.

(a) The sexagesimal system

This was taken over by the Greeks (one mayv guess by the Hellenistic
astronomers) from the Babylonians as a convenient way of expressing fractions
and (to a lesser extent) large numbers, and of performing calculations with
them. It is the first place-value system in history. In the translation and notes I
use the convenient modern ‘comma and semi-colon’ notation, in which

® For more detail see HAMA 11 755-71.
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6,13;10,0,58 represents 6 x 60 + 13+ 10x60™' +0x 6072 + 58 x 60™°. Ptolemy uses
the system only for fractions, and represents whole numbers, even when
combined with sexagesimal fractions, by the standard Greek (alphabetic)
notation. The translation follows this mixed notation (thus the above number
would be written 373;10,0,58 in the translation, and 67 T o V7] in Greek).

(b) Fractions

Except where it is necessary to be precise, Ptolemy prefers the traditional Greek
fractional system to the sexagesimal. In this, although it is possible to express
proper fractions as e.g. ‘4 5ths’, preference is given to unit fractions, so that, e.g.
‘¥ is expressed as the sum of § and 1 (written Z°8”, i.e. ‘11"). There is a special
sign for 3. In the translation I have usually converted these sums of unit fractions
to proper fractions without comment. However, I have always retained the’
fractional form where Ptolemy has it since it gives a misleading appearance of’
precision to convert to sexagesimals (as Manitius often does, putting an exact
number of minutes instead of a fraction of a degree). This is particularly true of

the star catalogue.

(¢) Trigonometry
‘ s

The sole trigonometrical function used by Ptolemy is the chord. The derivation
and structure of his chord table are fully explained in I 10. However, Ptolemy
does not give explicit instructions for its use in trigonometrical calculations,
although his method is obvious enough from the worked examples. In what
follows I give a literal translation, with commentary, of a typical calculation
involving trigonometry.

See Fig. A, and, for my conventions, compare the translation pp. 163-4. In the
given situation arc ©H is 30°, AD is 60°, AH is 2;30°, and it is required to find
the angle ADH (the ‘equation’). In modern trigonometry we would use the
cosine formula. Ptolemy has no equivalent, so he drops the perpendicular HK,
thus transforming the problem into one of solving only right triangles, which is
his standard procedure.'? .
‘Then since arc ®H is again 30 degrees, angle ® AH would be 30 of those [units]
of which 4 right angles are 360, and 60 of those [units] of which 2 right angles are
360. So the arc on HK is 60 of the units of which the circle {circumscribed]
about the right-angled [triangle] HKA is 360, and the arc on AK is 120, the
supplement making up the semi-circle. And so, of the chords subtended by
them, HK will be 60 of the units of which hypotenuse AH is 120, and AK 103;55
of the same [units].’ -
'®He knows the equivalent of the sine formula, namely that in the general triangle the sides are

proportional to the chords of the doubles of the opposite angles, but uses it surprisingly infrequently.
An example is IX 10 p. 462 (cf. n.96 there).
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G

Fig. A

To solve a right-angled triangle (here HKA), Ptolemy imagines a circle
circumscribed about it. Then the hypotenuse of the triangle is the diameter of
the circle, and is taken (initially) as 120 parts (R = 60 being the standard on
which Ptolemy’s chord table is constructed). The two acute angles of the
triangle being given, the other two sides can now be expressed in the same units:
they are the chords of the arcs of the circumscribed circle, which are the doubles
of the angles of the triangle (since they are equal to the angles at the centre).
Instead of explicitly doubling these angles, Ptolemy always first expresses them
in ‘units of which 2 right angles are 360’. (Following the convention invented by
B. R. Goldstein, I indicate these ‘demi degrees’ by the notation °°, reserving ©
for the standard degree of which there are 90 in a right angle.) This enables him
to switch smoothly from the triangle to the circle (and hence to the chord table,
which gives him the actual numbers 60° and 103;55°): an angle of size 8° is
20°°, and hence the arc of the circumscribing circle which corresponds to that
angle is 20°.

‘Therefore in those [units] of which line AH is 2;30, and the radius AD is 60, HK
will be 1;15 and AK, likewise, 2;10, and KD, the remainder, 57;50.’

The sides of triangle AKH are converted to the norm representing their actual
size (AH = 2;30°, hence they are multiplied by 2;30/120). This gives two sides of
the next right triangle to be solved, DHK:HK and (by subtraction of AK from
the given AD) KD.

‘And since the squares on these added together make the square on DH, the
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latter will be, in length, approximately 57;51 of the units of which line KH was
[found to be] 1;15.

Since Ptolemy has no tangent function, he has to use ‘Pythagoras’ theorem’ to
find the hypotenuse of the right triangle in question. He uses the word pijket, ‘in
length’, to indicate that he is taking the square root (considered as the side of a
square, hence a line length).

‘And so of those [units] of which hypotenuse DH is 120, line HK will be 2;34 and
the arc on it [HK, will be] 2;27 of those [units] of which the circle about DHK is
360. So that angle HDK is 2;27 of those [units] of which 2 right angles are 360,
and about 1;14 of those of which 4 right angles are 360.

The sides of triangle DHK are now converted to the standard in which the ,
hypotenuse is 120°, thus enabling Ptolemy to use the chord table to determine
the size of the arc corresponding to the side opposite the angle to be determined,
HDK. The latter, being at the circumference of the circumscribed circle, is half
the arc. Ptolemy again expresses this relationship by saying that it is the same
number of ‘demi degrees’ as the arc is ‘single degrees’, and then converting the
‘demi degrees’ to ‘single degrees’ by halving. Note that I frequently translate
expressions like ‘30 degrees of the kind of which the great circle is 360’ simply as
30°.

(d) Chronology and calendars

Ptolemy’s own chronological system is very simple. He uses the Egyptian year and
the era Nabonassar. The Egyptian vear is of unvarying length of 365 days,
consisting of twelve 30-day months and 5 extra (‘epagomenal’) days at the end.
Ptolemy uses the Greek transliterations of the Egyptian month names. For the
reader’s convenience, I usually add a Roman numeral indicating the number of
the month. The order of the months is:

I Thoth VII Phamenoth
I Phaophi VIII Pharmouthi
I Athyr IX Pachon
IV Choiak X Payni
V  Tybi XI Epiphi
VI Mechir XII Mesore.

The reason for choosing the era Nabonassar is given by Ptolemy at ITI 7 (p.
166: the earliest (Babylonian) observations available to him were from the
reign of King Nabonassar. Ptolemy’s epoch, Nabonassar 1, Thoth 1 cor-
responds to —746 February 26 in our reckoning.'! >

" Throughout this hook I use the ‘astronomical’ system of dating according to the Christianera,

since it is far simpler for calculating intervals than the ‘B.C./AD.’ system. In this, year -1
corresponds to 2 B.C., year 0 to 1 B.C, year | to A.D. 1, etc.
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Even when he refers to other calendars, Ptolemy usually gives the equivalent
date in his own system, so there is no uncertainty. Sometimes, however, he
gives, not the running date in the era Nabonassar, but only the regnal year of a
king. It is clear that there already existed, in some form, a ‘king-list’ enabling
one to relate the regnal year of a given king to a standard epoch.? Later, in his
‘Handy Tables’, Ptolemy published such a king-list (known as ‘Canon
Basileon’), and it survives, in a considerably augmented form, in Byzantine
versions of Theon of Alexandria’s revision of the Handy Tables. From these I
have excerpted and ‘reconstructed’ the table on p. 11, which makes no
historical pretensions, but is intended solely as an aid to readers of this
book. The basis of the table is Usener’s edition of the two versions in the
manuscript Leidensis gr. 78, in Monumenta Germaniae Historica, Auctores Antiquis-
stmi XIII (Chronica Minora Saec. IV.V. VL. VII, ed. Th. Mommsen), Vol. I1I, 447-
53, supplemented by my own reading of the version in the ms. Vaticanus gr.
1291, 16'-17". The names of the Babylonian and Assyrian kings are obviously
very corrupt, and I have made no attempt to emend them, but have chosen
those manuscript variants which seem closest to the forms now known from the
cuneiform sources, which are listed in the second column (supplied to me by A.
Sachs).

For the purposes of astronomical chronology. an integer number of vears is
assigned to each reign. As far as can be checked from independent sources,
‘Year 1’ of each reign was assumed to begin on the Thoth 1 preceding the
historical date on which the king began to reign.'> Thus, to use the table to go
from a given regnal vear to the era Nabonassar. one simply adds the number of
the regnal year to the total listed (in the fourth column) for the previous king.'®
E.g. to find the second vear of Mardokempad in the era Nabonassar (cf. IV 8 p.
204), we add 2 to the total of 26 given for his predecessor, Ilulai, and get the
twenty-eighth year in the era Nabonassar.

Although I supply in the translation the modern equivalent of all dates in the
Almagest, I have added, for the use of those readers who wish to check them, a
filth column listing the Julian equivalent of the first day of each king’s reign. If
one bears in mind that every Julian year divisible by 4 is a leap-vear, while the
Egyptian year is constant, this is a sufficient basis for the calculation. However,
I recommend as an easier alternative the use of Schram’s Kalendariographische
Tafeln: from pp. 182-9 of that one can find the Julian day number of any date in

'2 Papyrus tragments of such king-lists are found in P. Oxv. 1.35 and Sattler, Studien 39-30. These
are, however, later than Ptolemy. P. Oxy, 19.2222, a list of the Ptolemies of Egypt, is earlier than the
Almagest, but is very different in format from Ptolemy's king-list.

Y1t is not known why these two kings are combined. In cuneiform sources (e g. the king-list
translated in Pritchard, Ancient Near Eastern Texts 272 (iv), they appear consecutively, Ukin-zér
being assigned 3 years and Piilu 2.

'*This must be a corruption in the Greek tradition of Arses ("Apaomng), the usual form of this king's
name (also known as *Oapong)..

5This was recognised long ago. See Usener, MGH XIIL3 p. 441, with references to older
literature in his n.5.

' In the Handy Tables Ptolemy adopted the "era Philip’ (which already occurs in the Almagest as
‘death of Alexander’); hence in the mss. the totals for era Nabonassar go only as far as Alexander the
Macedonian (no. 31), and a new totalling system begins with Philip (no. 32). I have converted all
these later totals to the era Nabonassar by the addition of 424 to each. Cf. Schram p. 173.
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Introduction: Reconstructed king-list

Ruler

Kings [of Assyria
and Babvlonia)
Nabonassar
Nadi
Chinzer and Por
Tlulai
Mardokempad
Arkean
First interregnum
Belib
Aparanad
Regebel
Mesesemordak
Second interregnum
Asaridin
Saosdonchin
Kiniladan
Nabopolassar
Nabokolassar
Iloaroudam
Nerigasolassar
Nabonadi

13

Kings ol the Perstans
Cyrus

Kambyses

Darius [

Xe
Artaxerxes [
Darius 11
Artaxerxes 11
Ochus
Arogos'?

Darius 111

Alexander the Macedonian

Kings of the Macedonians
Philip who succeeded
Alexander the tounder
Alexander 11
Ptolemy son of Lagos
Ptolemy Philadelphos
Prolemy Euergetes
Ptolemy Philopator
Proiemy Epiphanes
Ptolemy Philometor
Ptolemy Euergetes II
Ptolemy Soter
Ptolemy Neos Dionyvsus
Cleopatra

Kings of the Romans
Augustus
Tiberius
Gaius
Claudius
Nero
Vespasian
Titus
Domitian
Nerva
Trajan
Hadrian
Antoninus

Correct form

Nabu-nasir

Nadin

Ukin-zér; Piilu
Elulai
Marduk-apla-iddin
Sarru-ukin

Bel-ibni
ABur-nadin-Sumi
Nergal-usezib
MusSezib-Marduk

ARur-aga-iddina
Samasi-Suma-ukin
Kandalanu
Nabu-apla-usur
Nabdi-kudurra-usur
Amil-Marduk
Nergal-Rarra-usur
Nabdi-na'id

Kurul
KambuZiva
Daravava'u
Lravaria
Artayiadra
Daravava’u
Artagiadra
Vahauka
Hawarka
Daravava u
TALEZavipog

dukinnos
‘AREZavdpog Etepog
Mrtoiepdiog Adyou
Diradelpog
Evepyétng
Pironarwp
‘Emgavig
Driopuntwp
Evepyétng B’
Totp

A6vvoog vEog
KXeonatpa

Augustus
Tiberius
Gaius
Claudius
Nero
Vespasianus
Titus
Domitianus
Nerva
Traianus
Hadrianus
Aelius Antoninus

Years of
reign

36
21
+1
19
16
21
R4

22

Total years to
end of reign

218
226
262
283
324
343
389
110
412
416
424

1

Julian date of
beginning of reign

-746 Feb. 26
-732 Feb. 23
-730 Feb. 22
-725 Feb. 21
~720 Feb: 20
-708 Fcb. 17
~703 Feb. 15
-701 Feb. 15
-698 Feb. 14
-692 Feb. 13
~691 Feh. 12
~-687 Feb. il
-679 Feb. 9

-666 Feb. 6

-646 Feb. |

-624 Jan. 27
-603 Jan. 21
=360 Jan. 11
-538 Jan. 10
554 Jan. Y

=537 Jan. 5
-528 Jan. 3
=520 Jan. 1
=485 Dee. 23
-64 Dec. 17
-423 Dee. 7
-404 Dee. 2
=358 Nov. 21
=337 Nov. 16
Nov. 15
=331 Nov. 14

-323 Nov. 12
-316 Nov. 10
-304 Nov. 7
-284 Nov. 2
-246 Oct. 24
-221 Ocf. 18
-204 Oct. 13
-180 Oct. 7
-145 Sept. 29
-116 Sept. 21,
-80 Sept. 12
-51 Sept. 5

-29 Aug. 31
- 14 Aug. 20
36 Aug. 14
40 Aug. 13
54 Aug. 10
68 Aug. 6
78 Aug. 4
81 Aug. 3
96 July 30
97 July 30
116 July 25
137 July 20

1
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the era Nabonassar in a few seconds, and hence (from his other tables) the
equivalent date in any standard calendar.

The only other aspect of Ptolemy’s own chronology requiring remark is the
‘double dates’. He frequently characterises the day of an observation by
expressions like [Tay@v 1{’ €ig v 1n’, translated ‘Pachon 17/18’, but literally
‘Pachon, the seventeenth towards the eighteenth’. Modern commentators have
made unnecessarily heavy weather of this. Ptolemy himself uses a noon epoch,
but this is an artificial starting-point (the reason for which he explains at 111 9 pp.
170-1), and has nothing to do with numbening the day. In antiquity the ‘civil epoch’
of the dav was either dawn (as in Egypt) or sunset (as in Babylon). In either
system, an event which took place in the daylight would be on the same ‘day’,
but one which took place in the night would be on ‘day n’ for those using dawn
epoch and ‘day n+l’ for those using sunset epoch. Hence ambiguity was
possible. Ptolemy uses double dates (which are found only for night-time
observations) tc avoid this ambiguity. The form he uses implies the Egyptian,
i.e. dawn epoch (cf. the long form 111 1 p. 138,17 1@’ T00 Mecopn peta p dpag
gyyUg tob gig v 1’ pnecovuktiov (literally ‘on the eleventh of Mesore,
approximately two hours after the midnight towards the tweifth’), but it would
be clear even to someone using sunset epoch {who would date the above event to
*Mesore 12°) what day he means.

In using the observations of his predecessors Ptolemy often has occasion to
refer to other systems of chronology and calendars. Although in such cases one
can always readily derive the equivalent date in Ptolemy’s own system (he
almost alwavs gives it explicitly), I shall describe them briefly here.

The most frequently mentioned is the Kallippic Cycles. To explain this, we
must go back to Meton, who in -431 devised a 19-vear ‘cvcle’, i.e. a fixed
scheme of intercalation of months containing 6940 days (thus the average
length of a year was 365f + % days).!” Since he was an Athenian, he used the
month names of the Athenian civil calendar for the months of his artificial
‘calendar’. A hundred vears later an associate of Aristotle, Kallippos, produced
a revision of this, based on the more accurate year-length of 365; days. In order
to achieve this, he eliminated one day from 4 Metonic cycles, thus producing
the ‘Kallippic cycle’ of 76 years and 27759 days. What was later known as the
‘First Kallippic Cvcle’ began at the summer solstice (probably June 28th) of the
vear —329. In the Almagest we find references also to the Second and Third
Kallippic Cycles, which began in =253 and =177 respectively. To judge from
the Almagest, this chronological system was the one most used by earlier
Hellenistic astronomers.'® In VII 3 four observations by Timocharis (Alexan-
dria, third century B.C)) are given according to the year of the First Kallippic
Cycle and ‘Athenian’ month and day. On the basis of these, several attempts
have been made to reconstruct the whole ‘Kallippic calendar’, with discrepant
results. Since the above constitute the whole evidential basis, apart from the

'7For a detailed discussion see Toomer{7]. I give there the arguments for supposing that Meton’s
purpose was not to reform the Athenian calendar, but to establish an ‘astronomical chronology’.

'®The dates of the three eclipses in IV 11 (p. 211, cf. n.63 there) which, though observed in
Babylon, are given according to Athenian archon and Athenian month, are presumably in the
Metonic calendar.
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passage in Geminus, Eisagoge VIII, which I regard as fiction, and two dubious
equivalences in the Milesian parapegma, any reconstruction is academic.'®
Here I note only that Kallippos evidently retained the peculiar Athenian method
of counting the days of the month by decads, and in the last decad counting
backwards, so that VII 3 p. 336 t1j ¢” ¢Bivovtog, literally ‘on the sixth [day] of
the waning [moon]’, means ‘the sixth day from the end of the last decad’, i.e. the
twenty-fifth.? ’

Hipparchus too used the Kallippic cycles for astronomical dating, but
combined them, not with Kallippos’ ‘Athenian’ calendar, but with the
Egyptian calendar (i.e. he used the cycles simply as a year count), at least as far
as we can tell from the Almagest. This seems to have led to ambiguities, since
the ‘Kallippic’ year began at or near the summer solstice, while the Egyptian
year is a ‘wandering.year’, which in Hipparchus’ time began about the end of
September. Thus there arose the possibility of a discrepancy of 1 in the year
count, for certain stretches of the year (whether it is +1 or -1 depends on
Hipparchus’ choice). Such a discrepancy is firmly attested in Almagest IV 11
(see p. 214 n. 72), and cannot plausibly be removed by emendation, though this
has been done (by Ideler and others) in the interest of consistency. In fact it is
impossible to make all of Hipparchus’ ‘Kallippic cycle’ dates in the Almagest
consistent with one another (see p. 224 no. 13), and we must allow for the
possibility that Hipparchus used different systems in different works.

Three planetary observations in the Almagest are dated xatd Xakdatoug,
‘according to the Chaldaeans’, with a year number and a Macedonian month
name and day number. The year numbers show that the era used is that known
in modern times as the Seleucid Era (dating from the year which Seleucus I
counted as the first of his reign, -311/10), which was common throughout the
Seleucid empire. Since the observations are undoubtedly Babylonian, the
particular epoch used in them is, as one would expect, that known from the
surviving Babylonian astronomical texts, 1 Nisan (April) -310 (Greeks under
the Seleucid empire commonly used an epoch of autumn -311). The use of
Macedonian month names has rightly been taken to show that the Babylonian
lunar months were simply called by the names of the Macedonian months by
the Greeks under the Seleucid empire: if one computes the date of the first day of
the ‘Macedonian’ month from the equivalent date in the era Nabonassar given
by Ptolemy, it coincides (with an error of no more than one day) with the
computed day of first visibility of the lunar crescent at Babylon.? There is other
evidence for the assimilation of the month names,? but this is the strongest.

Unattested outside the Almagest is the Calendar of Dionysius. This had a

!9 Those who care to may consult Ginzel 11 409-19 and Samuel, Greek and Roman Chronology, 42-9
for details and literature.

® For this system see Samuel, Greek and Roman Chronology 59-60. I do not know why it is not used
for the other three ‘Kallippic’ dates in which the days are simply numbered consecutively.

3'These are conveniently listed in Parker-Dubberstein. )

22 For details see Samuel, Greek and Roman Chronology 140-2. However, Samuel is wrong in saying
that the Almagest evidence proves that the assimilation was made as early as the date of the earliest
observation (Nov. -244). In the cuneiform record from which this was derived the Babylonian
names must have been used. It was only when this was translated into Greek (which may have been
as much as a century later) that the Macedonian names were substituted.
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running year count and months named after the signs of the zodiac
(corresponding, at least approximately, to the period of the year when the sun
was in the sign in question). The months Tauron (8 ), Didymon (IT), Leonton
(£1), Parthenon (m), Skorpion (m ), Aigon (I») and Hydron (<) are attested.
From analysis of the Almagest evidence Bockh, Sonnenkreise 286-340, showed
that the epoch of the calendar was the summer solstice of -284. Since Thoth 1
(Nov. 2) of -284 is the beginning of the first regnal year of Ptolemy
Philadelphos, it is plausibly concluded that Dionysius observed in Egypt.
Béckh’s further conclusions, that the calendar was similar to the Egyptian one
in having 12 months of 30 days, but was modified by introducing a sixth
epagomenal day every four years, cannot be regarded as certain, especially
since this requires ‘emending’ some of the Almagest dates. Here, as for the
Kallippic calendar, ‘reconstruction’ seems pointless when the evidence is so
scanty and the likelihood of verification utterly remote.?

One observation is dated in the Bithynian calendar of the imperial period. Like
a number of other contemporary calendars in Asia Minor, this was simply the
Julian calendar, with different month-names, and with the first day of the year
Augustus’ birthday, Sept. 23. For details and literature see Samuel, Greek and
Roman Chronology 174-5.

(e) Ptolemy’s star catalogue

The list of the coordinates and magnitudes of the principal fixed stars visible to
Ptolemy poses special problems to the translator. In particular, there are
numerous manuscript variants in the coordinates, and while one must put some
number in the translation, it is often diflicult to be certain about one’s choice.
The solution I have adopted is {in the star catalogue only) to append an asterisk
to any element (longitude, latitude, magnitude, description or identification)
where there is reason to suppose that it may be incorrect (i.e. not what Ptolemy
wrote or intended),** either because there is a plausible ms. variant, or because
of some gross inconsistency with the astronomical facts. In such cases I give all
significant variants known to me in a footnote. I have made no eflort to record
all variants, since most are obviously wrong. The reader who wishes to go
further must still consult Peters-Knobel, on which I have drawn heavily, and
which is still the best treatment of the catalogue as a whole, though badly in
need of updating and revision in certain respects.”

Ptolemy lists the stars under 48 constellations, and gives for each star (1) a
description of its location on the ‘figure’ and (sometimes) of its brightness and
colour; (2) its longitude; (3) its latitude and direction (north or south of the
ecliptic); and (4) its magnitude. I have followed my predecessors (notably
Manitius) in adding to these: (a) an initial column giving a running number to

% The interested reader may consult H4M A 111 1067 n.2 and Samuel, Greek and Roman Chronology
50, n.6 for further literature. .

# The lack of an asterisk does not imply that I regard the reading adopted as Ptolemy's beyond
any question, but only that I have no good reason to doubt it.

*See the strictures of Kunitzsch, Der Almagest 46.
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the star within its constellation (stars listed at the end of some constellations by
Ptolemy as ‘outside the constellation’, i.e. not part of the imaginary figure, are
numbered continuously with those preceding them); (b) a final column giving
the modern identification of the star. For those stars which have them, thisisthe
Bayer letter or Flamsteed number. Certain fainter stars have neither; for these I
give the number in the Yale Bright Star Catalogue (abbreviated as ‘BSC’).
From that publication those interested can find the corresponding number in
the Durchmusterung and the Henry Draper and Boss General Catalogues. I
have abandoned all references to the antiquated Piazzi catalogue (still used by
Peters-Knobel).

I have used Roman numerals to number the constellations, and refer to
individual stars (throughout the translation) by the combination of Roman and
Arabic numerals (thus ‘catalogue XXXIX 2’ refers to the second star in the
thirty-ninth constellation (Canis Minor), namely Procyon).

The star descriptions pose numerous individual problems. only a few of
which are touched on in the footnotes. Ideally one should provide a
reconstruction of the outline of each constellation as it appears on Ptolemy's
star-globe. Unfortunately no one has done the necessary work of assembling
and comparing all the literary and iconographic evidence from antiquity and
from the derivative Arabic tradition (notably as-Sif1). This would be an
interesting and valuable enterprise. Meanwhile, for the reader who needs some
visual illustration, I can recommend only the old work of Baver, { ranometria,
with the warning that in many cases his positioning of the stars on the figures,
and the outlines of the figures themselves. are certainly difterent from
Ptolemy’s.? On the matter of the orientation of the figures, I have satistied
myself that Ptolemy describes them as if they were drawn on the inside of a globe,
as seen by an observer at the centre of that globe, and facing towards him. This
is in agreement with what Hipparchus says (Comm. in Arat. 14 5): *for all the stars
are described in constellations (jotépiotat) from our point of view, and as if
they were facing us. except for such of them as are drawn in profile’
(xatdypagov, as interpreted by Manitius, whom I follow dubiously). It is in
this sense that we must interpret "left hand’, "right leg’, etc. This has to be said,
since on the actual star globes the constellations were necessarily drawn ¢n the
outside. Hence the orientation of the figures was (at least in some cases) reversed,
which could lead to confusion.”” I have rendered the prepositions used by
Ptolemy in indicating the positions of stars with respect to parts of the figures
consistently, as follows:

o

in:v
on = &nt .

over = Onép

M

% The work of Thiele, Antike Himmelsbilder, is very little help, although I have referred 1o it to
illustrate some particulars. ~

*1CK. the scholion on Aratus, Maass. Comm. in Aral. p. 384 no. 251: “the signs look inward with
respect to the heavens . . . but they have their backs to the globe, so that their faces may be seen.
Hence, if he says “right hand” or *‘left hand™ and we find the opposite on the globe, we should not
be confounded.’
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above = éndvw
under = Onéd
below = brokdre
just over = xatd + genitive
advance, in advance = nponyoduevog
rear, to the rear = Enduevog

On the meaning of the last two terms see below p. 20. Note that ‘rear’ is never
used in a sense other than directional. To indicate the back parts of an animal
figure I use ‘hind’.

Both longitudes and latitudes are given, not in degrees and minutes, but in
degrees and fractions of a degree. I have retained this in the translation (see p.
7). With very few exceptions, the longitudes are not given more accurately
than to £°. (This has been taken to imply that the ecliptic ring of Ptolemy’s
instrument was graduated only every 10’). However, one frequently finds the
fractions 1° and i° for the latitudes.

The latitudes in Ptolemy’s list are preceded by the direction (fo = Béperog,
‘northern’; vo = votiog, ‘southern’). I have rendered these by + and -
respectively.

The magnitudes range (according to a system which certainly precedes
Ptolemy. but is only conjecturally attributed to Hipparchus) from 1 to 6.
Ptolemy indicates intermediate magnitudes by adding (after the number)
peilwv, ‘greater’ or Ehdoowv, ‘less’ (abbreviated in the mss.). I have rendered
these by > and < (before the number) respectively. One occasionally finds for
the magnitude, instead of a number, the remark duavpog (rendered ‘f.° for
‘faint’) or vegel. (for vepehoeldrig), ‘nebulous’, abbreviated as ‘neb.’

For the identifications. wherever Peters-Knobel and Manitius are in
agreement, I have usually been content to adopt their opinion. Where they
differ (and even when they agree, in some special cases),”® I have checked the
possibilities as carefully as I could, using the large-scale Atlas of the Heavens by
Betvaf, and transforming Ptolemy’s coordinates to right ascension and
declination at the modern epoch, where necessary. However, I have made no
attempt to redo the work of Peters and Knobel, namely to compute the
longitude and latitude of the relevant stars for Ptolemy’s time from modern
data (in particular using the most up-to-date values for the proper motions). This
might be worth while, though I doubt whether the degree of improvement over
Peters-Knobel would justify the large amount of computation. In anv case, itis
unlikely that it would eliminate the doubts that remain about the identification
of many of the fainter stars.

At the end of each constellation in the mss. are listed the total number of'stars
in the constellation, and the sub-totals of each magnitude. These in turn are
added up at various intermediate points (the northern segment, the zodiac, and
the southern segment), and the grand totals are given at the end. I am

*8 Notably, where Ptolemy describes a star as a ‘nebulous mass’ (ve@elo€11ig ouotpoeri), [ have
preferred to give the globular cluster (abbreviated ‘*CGlo’) or galactic cluster (abbreviated 'CGal’)
rather than some particular star inside it.
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convinced that this was not done by Ptolemy (who makes no mention of it in his
description of the catalogue, VII 4 pp. 339-40). Another indication of the
spuriousness of these passages is that no separate count is made in the totals of

the stars which are greater (>) or less (<) than a certain magnitude: all are

lumped in with the stars of that magnitude. I have translated the passages in
question, but enclosed them in brackets thus: { }.

(f) Explanations of special terms

(1) Geometrical

by subtraction (howmdg -1y -Ov): literally “the remaining [part)’, ‘remainder’
(I have on occasion so rendered it).

by addition (6Log -n -ov): literally "the total’.

Crd x: chord of the angle x° (R = 60°). Greek has no word with the specific
meaning ‘chord’, but uses the generic e08eta, ‘straight line’. ‘Crd x’ renders 1
Tag x poipag broteivovoa £UBeTa, “the straight line subtending x degrees’.

In connection with the Menelaus Theorem (see - 18), an expression of the
type ‘Crd arc 2AB’ represents ] Urd thv SirA{v thig AB nepupspsmg, literally
‘the [line] subtended by the double of arc AB.

supplement, supplementary arc (1 Aetnovoa [Aotmy] €1g 10 IKOKALOV REPIPEPELQ):
literally ‘the arc which is the remainder to the semi-circle’.

complement (howmny €ig 10 teraptnudéptov): literally. ‘the remainder to the
quadrant’.

|| literally, ‘is similar to’. Used of arcs of different-sized circles. Arc AB|| arc GD
if each arc is the same fraction of its circle.

Il Gooydwvidv éoti): literally, *has[all] its angles equal to’, i.e. is similar to (used
only of triangles).

= (io6mhevpdv EoTt): literally ‘has its sides equal to’, i.e. is congruent to. Used
only of spherical triangles. Sometimesicoy®viov kGt icdmhevpdv éott, ‘hasits
angles and sides equal to’.

Q.E.D. (6nep Eder deifau): literally ‘which is what it was required to prove’.

componendo (cuvOévtt). Expresses the operation of addition of ratios: if
a:b=c:d, then (a + b)b=(c+d):d -

dividendo (S1€MévTL, xata draipectv) (1) Usually expresses the operation of
subtraction of ratios: ifa: b=c:d, then(a=b):b=(c-d):d
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(2) Once, at XII 1 (see p. 558 n.4) S1eA6vtL expresses division of members of
ratios. fa: b=c:d, thend:b=%:d

Menelaus Configuration and Menelaus Theorem (used only in the footnotes and
explanatory additions). Cf. H4MA 26-9. Fig. B represents a Menelaus
Configuration. m,n,r and s are four great circle arcs on the surface of the sphere,
intersecting each other as shown, and divided by the intersections into the parts
m,;, my etc. (thus m = m; + m, etc.) In I 10 Ptolemy proves the theorems

I Crd2m  Crd 2r y Crd 2s,
Crd 2m; = Crd 2r, Crd 2s

11 Crd2r, Crd2m, Crd2n
Crd 2r, ~ Crd 2m, « Crd 2n,

Since it is known that these were discovered by Menelaus, Neugebauer has
named them ‘Menelaus Theorem I' and ‘Menelaus Theorem II’ respectively,
and [ follow him, abbreviating to ‘M.T.I.” and ‘M. T.IT".

(i1) Spherical astronomy

(at) sphaera recta (Em’ OpBfig THg oeaipag) and (al) sphaera obliqgua (Em’
gyxexhpévng tfig opaipag). These mediaeval Latin terms are the literal
translations of the Greek, meaning ‘on the upright sphere’ and ‘on the inclined
sphere’ respectively. Probably taken from the use of celestial globes, they refer
to the phenomena which occur when the celestial equator is perpendicular to
the local horizon (sphaera recta) or inclined to it at an acute angle (sphaera
obliqua). In particular, we use rising-time at sphaera recta -or right ascension, and
rising-time at sphaera obliqua or oblique ascension to designate the arc of the equator
which crosses the horizon together with a given arc of the ecliptic (e.g. one
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zodiacal sign) at sphaera recta (i.e. at the terrestrial equator), and at sphaera
obliqua (i.e. any other terrestrial latitude) respectively.

equator represents ionuepvog (kbxAog), literally ‘circle of equal day’, so called
for the reason Ptolemy gives in I 8 (pp. 45-6).

meridian represents peonufpivog (kOkrog), literally ‘midday circle’ (défined
and explained at I 8 p. 47). Meridian passage of a heavenly body is called
culmination. The Greek terms for culminate and culmination, pecovpavely,
pecovpdvnoig, mean literally ‘being in the middle of the heaven’. upper and lower
culmination are expressed by Ontép yfjv and O70 yfjv, meaning ‘above the earth’
and ‘below the earth’ respectively, and sometimes so translated.

An altitude circle is any circle drawn through the zenith perpendicular to the,
horizon. Ptolemy has no special term for this in the Almagest, merely saying
‘the (great) circle drawn through the zenith (through the poles of the horizon)’,
e.g. II 12, HI 166, 20-1.

colure. This term is used by Prolemy only once, at II 6 p. 83. I translate part of
Manitius’ note on that passage: Two of the circles of declination threugh the
poles of the equator are named ‘colure’ (k6Aovpog): the solsticial colure, which
goes through the solstices and hence carries the poles of the ecliptic, and the
equinoctial colure. These two colures divide the sphere intd four equal parts
and divide both ecliptic and equator into four quadrants. so that one quadrant
corresponds to each season of the year. Ptolemy counts the solsticial colure as
boundary of the daily revolution [I8 pp. 46-7, where however the term ‘colure’
is not used], but never explicitly mentions the equinoctial colure. Both colures
were already defined by Eudoxus (Hipparchus, Comm. in Arat. 117 fI.) The term
is explained by Achilles, Isagoge 27 (Maass, Comm. in Arat. 60) as follows: ‘They
are called colures because they appear to have their tails cut off as it were
(xexohoVoBat domep tdg ovpdg), since we cannot see the parts of them
beginning at the antarctic, always invisible parallel’.

It is unfortunate that we have to use the same word /atitude to refer both to the
celestial coordinate (vertical to the ecliptic) and to the unrelated terrestrial
coordinate. Ptolemy uses, for the former ntidtog, and for the latter kAipa,
literally ‘inclination’. When necessary I gloss this e.g. as ‘[terrestrial] latitude’.
kAipa, however, does not refer to the coordinate as such (for which Ptolemy uses
Eyxhpa, HI 68,9, Eyxhiowg, HI 101,23 or, once, mhdtog, HI 188,4), but to a
specific ‘band’ of the earth where the same phenomena (e.g. length of longest
daylight) are found. Hence in early Hellenistic times arose the notion of the
division of the known world (the oikovpévn) into 7 standard climata (see
HAMA 334 1., 11 727 ff. and Honigmann, Die sieben Klimata). Thisis reflected in .
several places in the Almagest, e.g. in Table IT 13. I refer to these seven standard~
parallels by Roman numerals, e.g. Clima IV = the parallel through Rhodes,
longest day 144 hours. .
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(iii) Referring to the heavenly bodies

As Ptolemy explains in I 8, in his system the whole heavens are conceived as
rotating from east to west, making one revolution daily. The direction defined
by this motion, and the direction counter to it, are called &ig td nponyodpeva
(‘;owards the leading [parts]’) and €ig ta Emdpueva (‘towards the following
[parts]’) respectively. The corresponding adjectives mponyovuevog and
gnopevog are also found, particularly in the star catalogue, and Ptolemy
frequently uses the phrases eig 1@ mponyovueva (Emdueva) tdv Lwdiev,
‘towards the leading (following) [parts] of the zodiacal signs’, to indicate the
direction of motion in the ecliptic. A modern reader may find this confusing:
since the normal motion of bodies in the ecliptic is from west to east, what we
regard as forward motion, e.g. of a planet, is described as ‘towards the following
[parts]’ (‘towards the rear’ in my translation). No version of these terms in a
modern language is satisfactory. One cannot use ‘west’ and ‘east’ because these
must be reserved for Ptolemy's duopai and dvatokai, which are confined to
situations where a terrestrial observer is implied. It is a distortion to translate
{with Manitius) *in the reverse order of the signs’ and ‘in the order of the signs’,
since this implies that the terms define ecliptic coordinates, whereas they are in
the equatorial system, and while it is usually true that a celestial object which
nponyeitat (‘leads’) another will have a lesser ecliptic longitude, if their
latitudes difler greatly the reverse may be true, especially at very high ecliptic
latitudes. Precisely this situation occurs in the star catalogue, despite Ptolemy’s
own statement at VII 4 p. 340 that the terms in the catalogue define ecliptic
coordinates (see n.93 there). Although I am aware that my choice 100 has its
drawbacks, I have settled on in advance for gig 10 tponyovueva, and lowards the
rear for €ig 1a Endpeva. These always imply ‘with respect to the daily motion
from east to west’, with the paradoxical consequence, as remarked above, that
in the ecliptic a body which is ‘in advance’ of another has a lesser longitude.
However, I have committed an inconsistency in translating the derived noun
nponyNGig as retrogradation. This is used only for the portion of the courses ot the
five planets in which they reverse their normal direction of motion, and it would
be too conltusing to render this by ‘motion in advance’.

ecliptic. Ptolemy never refers to this circle by the term £xAeintikog (which he con-
fines strictly to the meaning ‘having to do with eclipses’). His normal term is6 14
péoov v Lwdiov (kvkhog), ‘the (circle) through the middle of the zodiacal
signs’ (e.g. HI 18,23-4); more fully, 6 Aé€0¢ xai Sra pécov t@v {mdimv kikrog,
‘the inclined circle through the middle of the signs’ (HI 64,4). Occasionally,
when the context is clear, simply A6€o¢g kOkAog, ‘inclined circle’ (HI 8,22).
However, the latter can be used for other things, notably the moon’s orbit
(which is ‘inclined’ to the ecliptic). I normally use ‘ecliptic’ throughout.

{z0diacal] sign. The conventional subdivision of the ecliptic into twelve 30°
stretches named Aries, Taurus, etc. For this Ptolemy uses, not {@dtov (‘animal
sign’), but dwdexatnudopov (‘twelfth’), presumably because he wishes to
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distinguish the ecliptic, a notional circle, from the zodiac, a band of actual
constellations.

star. The Greek term dotfp really means ‘heavenly body’, and can be used
indifferently for a star (in the modern sense), a planet, or even the sun and
moon. When Ptolemy wishes to distinguish what we call stars, he says “fixed
stars’. I have normally translated dat1ip according to the context, as ‘planet’,
‘star’ or ‘body’. However, in I 3-8, where Ptolemy uses the term to include all
heavenly bodies, I too have used star in this special sense. When naming the five
planets, Ptolemy almost always uses the periphrasis ‘star of . . ’, thus 6 100
Kpovou [dotrip], ‘[star] of Kronos’. I always translate simply ‘Saturn’ etc.

latitude (celestial). mhatog (literally ‘breadth’) refers not only to ‘the direction .
orthogonal to the ecliptic’, but to any ‘vertical’ direction, e.g. that normal to the *

equator. In such cases I use, not ‘latitude’, but another appropriate term (see I
12 p. 63 with n. 74). In VII 3, however, I have been forced to use ‘latitude’ to
express the more general meaning of the Greek (see p. 329 n.55).

Ptolemy uses Exxevtpog as both adjective and noun. It may be that in the latter
case one has alwavs to understand £xKkevTpog KUKAOG, ‘eccentric circle’.
However, to avoid ambiguity, I have (following mediaeval usage) consistently
denoted the noun by eccentre and the adjective by eccentric. An ‘egcentre’ is simply
an eccentric circle. Similarly for concentre and concentric.

I have occasionally used the convenient mediaeval term deferent to denote the
circle on which an epicycle is ‘carried’. Ptolemy has no one-word equivalent,
but uses phrases like ‘the concentric carrying the epicycle’, ‘the circle carrying

1.

anomaly. As noted e.g. by Pedersen (139 with n.9), dvopadia in the Almagest
has a number of different meanings. Despite the ambiguity, I have generally
rendered dvopalia and the adjective from which it is derived, dvéparog, by
‘anomaly’, ‘anomalistic’, although where necessary I have translated the latter
literally as ‘non-uniform’. Besides referring to non-uniform motion, ‘anomaly’
is also used for the mean (hence uniform) motion of the moon and planets on
their epicycles (because the motion on the epicycle produces the appearance of
‘non-uniformity’). For the planets Ptolemy distinguishes between the synodic
anomaly (1) mpdg tov fAtov dvowpalria, ‘the anomaly with respect to the sun’,
HII 255,8), which produces the phenomena of retrogradation and varies with
the planet’s elongation from the sun, and the ecliptic anomaly ({eSrax
dvopalia, HII 258,11), which varies according to the planet’s position in the
ecliptic.

equation. I use this convenient mediaeval term for the angle (or arc) to be applied
10 a mean motion to ‘correct’ it to account for a particular feature of the
geometric model. Ptolemy uses the vaguer terms t6 Suapopov ‘difference’ (which
is also used for many other things) and tpocBagpaipeoig (‘amount to be added

it il
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or subtracted’). equation of anomaly refers to the correction for the varying
position of a body on its epicycle, and equation of centre (only in the footnotes, not
the text) to the correction due to the eccentricity of a planet’s deferent.

centrum. | have occasionally used this mediaeval term in the footnotes to denote
the angular distance from apogee (see below) to the centre of the epicycle.

elongation (&mox) is the angular distance along the ecliptic between two bodies
or points. It is used particularly, but not exclusively, for the ecliptic distance
between sun and moon.

apogee and perigee are simply transcriptions of dréyelov and nepiyeiov, literally
‘[point] far from earth’ and ‘[point] near to earth’. These are the usual terms for
the points on a body’s orbit which are respectively farthest from and nearest to
the terrestrial observer. Ptolemy also uses the superlative forms droygidtatov
(repryerdtatov) onuelov (‘point farthest from (nearest to) earth’), with no
obvious difference in meaning. However, in the case of Mercury, translation of
both by ‘perigee’ generates an ambiguity. For all other bodies, in Ptolemy's
models. the perigee is diametrically opposite the apogee. but for Mercury the
point of closest approach is about 120° from apogee. Ptolemy still refers to the
point 180° from apogee as the ‘perigee’ (neptyeiov) for Mercury, and when he
wants to refer to the point of that planet’s closest approach uses the superlative
(mepryeidtarog). I have mitigated the ambiguity by translating the latter, not
as "perigee’. but as "closest to earth’ {(for Mercury alone).

phase. Used for the fixed stars and planets, this is simply a transcription of doig,
and is a general term including all the significant “configurations with respect to
the sun’ (listed by Ptolemy at VIII 4 pp. 409- 10. and exemplitied in his partially
extant work doeirg dmhavdv actépwv, ‘Phases of the Fixed Stars’), such as first
visibility at sunset, or last visibility just before dawn. But the literal meaning of
@doig is ‘appearance’, and Ptolemy also uses it to mean specifically ‘first
visibility’ of a body after a period of invisibility. To avoid ambiguity, I have
translated the latter case by ‘first visibility’, reserving ‘phase’ for the general
term.

(iv) Referring to sun and moon

conjunction is a fairly literal rendering of ohvodog (‘meeting’), but apposition
renders tavoéAnvog (literally ‘full moon’, which occurs when sun and moon
are in opposition). syzygy is a transcription of the convenient cuuyia (literally
‘voking together’), a general term to denote either or both conjunction and
opposition. In eclipses the partial phases are denoted by immersion (Euntwoig,
‘falling in’, the phase from the beginning of the eclipse to totality) and emersion
(@vaniripwoig, ‘filling up again’, the phase from the end of totality to the end of
the eclipse). The total phase is denoted by povij (‘remaining’) and rendered by
duration (uf totality).
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(v) Time-reckoning

Ptolemy often uses the term vuy8rjpepov, which combines the Greek words for
night and day, to mean the ‘solar day’ of 24 hours. There is no such convenient
term in English. I have generally translated it 2y when no ambiguity is pos-
sible, but have occasionally resorted to periphrasis (e.g. II 3 p. 79= HI 96, 7-9).
Since we use clocks, we reckon time by the mean solar day of uniform length,
the average time taken by the sun to go from one meridian crossing to the next.
In antiquity, where the normal means of telling time was the sundial, it was
usually reckoned by the true solar day, of varying length, the time taken by the
sun to go from one meridian crossing to the next on a specific day. In III 9
Ptolemy explains why they are different, and how to transform one into the
other. He uses the terms opald vuydnuepa (‘uniform days’) and avopaia
vuy8ripepa (‘non-uniform days’) for mean and true solar days respectively.
When he is talking about intervals, he often refers to those measured in true °
solar days as ‘reckoned simply’, and those measured in mean solar days as
‘reckoned accurately’.

The kind of hours normally used in the ancient world were seasonal hours (Gpat

xatpixai), sometimes known as ‘civil hours’. An hour was isth of the actual

length of davlight or night-time at a given place, and hence the length of an
hour varied according to terrestrial latitude and time of year, and a day-hour

was of different length from a night -hour except at equinox. For astronomical

purposes, however, the uniform ith of a day was used; these were known as

equinoctial hours (mpal lonuepwvai), because they were the same length as the

seasonal hour at equinox. If an ordinal number is attached to an hour, it

indicates a seasonal hour, counted from dawn (or sunset, if specified by "of
night’ or by the context). Thus ‘the sixth hour’ is the same as noon.

time-degrees. Another way of measuring time was by the amount of the celestial
equator which had passed a bound (horizon or meridian). This was often con-
nected with the rising-times of ecliptic arcs (see pp. 18-19). This measurement
was in degrees. Since 360° of the equator cross the meridian in about one day,
one “time-degree’ equals fsth of an equinoctial hour or 4 minutes. The Greek
term is ypdévor ionuepivoi (‘equatorial times’), sometimes abbreviated to
xpévou (‘times’).

-

{vi) Other

mean (u€cog) can imply ‘of average length’ (as in ‘mean synodxc month’) or
‘uniform’ (as in ‘mean motion in longitude’).

hypothesis. With some hesitation, I have used this to translate dnéBeoig,
although the connotation in the Almagest never really coincides with the
modern one. Whereas we use ‘hypothesis’ to denote a tentative theory which
has still to be verified, Ptolemy usually means by bn68go1g something more like
‘model’, ‘system of explanation’, often indeed referring to ‘the hypotheses
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which we have demonstrated’. The word still retains much of the etymological
meaning of ‘basis on which something else is constructed’. The corresponding
verbal forms are bnotibetar, Oroxeltar, which I have frequently translated,
not only as ‘assume’, but even as ‘it is given’. They are standard terms of Greek
geometry in this sense at least as early as Euclid.

6. Editorial procedures

Since the translation is based principally on the Teubner text of Heiberg (see p.
3), it is keyed to that edition by the addition of Heiberg’s page numbers in the
margin. There and elsewhere references to Heiberg are preceded by ‘H’. Thus
HI 236,15 means ‘Heiberg’s edition, Vol. I p. 236 line 15’. Where the context
makes it unnecessary the volume number is omitted.

Brackets are used as follows. Square brackets [ ] enclose explanatory
additions to or expansions of the Greek text by the translator. Curved brackets
{ }enclose passages which I believe to be later additions to Ptolemy’s original
text. Parentheses () are used merely for clarity, better to express the author’s
sequence of thought.

As explained on p. 5, I believe the list of chapter headings preceding each
book to be a later addition. Nevertheless, since these serve a useful purpose, I
have grouped them together at the beginning (pp. 27-32) to serve as a table of
contents.

I have made no effort to provide a continuous commentary, but refer the
reader to the relevant sections in Olaf Pedersen’s d Survey of the Almagest
(abbreviated ‘Pedersen’) and O. Neugebauer's 4 History of Ancient Mathematical
Astronomy (abbreviated HAMA). My footnotes are confined to particulars not
treated by them, or requiring some elaboration, and to textual corrections. In
Appendix A, however, I have provided worked examples of every type of
problem (including, where it is not utterly trivial, the use of the tables) which
arises in the Almagest, except where Ptolemy himself gives a worked example.
Where possible, my example is taken from a calculation or observation actually
occurring in the Almagest. Appendix B lists all my corrections to Heiberg’s text.
Appendix C discusses the problem of the derivation of Ptolemy’s planetary
mean motions, which has never been adequately treated.

The index includes all proper names occurring in the text, and certain
selected topics (mostly taken from the Introduction and footnotes). It also
contains all observations recorded in the Almagest, under the topic or body
concerned (e.g. ‘equinox’, ‘moon’). For a list of the observations in chrono-
logical order the reader is referred to Pedersen’s Appendix A.

In drawing the diagrams I have tried to reproduce the manuscript tradition,
while at the same time making the figures as clear as possible by marking the
points unambiguously.. Since there is often considerable variation in the
manuscript representations, I have been forced to make many choices; but I
have not ‘modernized’ the figures. Where a figure seemed inadequate, I have
not changed it, but have added an explanatory one of my own. Such
explanatory (and other supplementary) figures are distinguished by alpha-
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betical numbering (‘Fig. A’ etc.), whereas figures reproduced from the
manuscripts are numbered according to the book and the order within that
book (thus ‘Fig. 3.10’ indicates that this is the tenth diagram in Book IIJ; in the
manuscripts they are not usually numbered, but where they are, they are
numbered separately in each book). I have represented the Greek letters of the
figures by the following system:

Text Trans. Text Trans. Text Trans.
A A 1 J 1 P
B B K K P R
r G A L ) S
A D M M T T
E E N N Y Y
Z Z = X 0] F
H H (0] (6] X Q
(0] (0] ¥ \Y

7. Other conventional symbols and abbreviations

eccentricity ° .
radius of epicycle or body

length of longest day in hours

length of shortest day in hours

radius of principal circle {(e.g. of deferent)

{1) right ascension (see p. 18)

(2) anomaly (see p. 21)

celestial latitude

declination

obliquity of ecliptic

elongation

equation

inclination of orbit (of moon or planet)
‘centrum’, i.e. distance from apogee (see p. 22)
longitude

(1) oblique ascension (see p. 18)

(2) geocentric distance

[0} terrestrial latitude

o  distance from northpoint on orbit

Rmy g

V>R TDOI M O™

A bar over a letter denotes ‘mean’, thus X = ‘mean longitude’.

The following are used in a raised position (e.g. 2°) to denote units:

d days
h equinoctial hours




o

co

%

In the star catalogue only, * indicates some doubt about the reading. For other
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months
years

‘parts’, i.e. the arbitrary units in trigonometrical calculations (see pp.

7-9)
degrees

demi degrees (2°° = 1°, see p. 8)

degrees per day

abbreviations particular to the star catalogue see p. 341 n.95.

Lodiacal signs

Aries
Taurus
Gemini
Cancer
Leo

Virgo
Libra
Scorpius
Sagittarius
Capricornus
Aquarius
Pisces

XKUS»ah3aoligx-3

Planetary symbols

Other astronomical symbols

P 0°= 0° in longitude
8 0°= 30°
II 0° = 60°
= 0°= 90°
N 0°=120°
m 0° = 150°
== 0° = 180°
m, 0° = 210°
I 0°=240°
W 0°=270°
= 0°=300°
> 0° = 330°

h Saturn

Y Jupiter

& Mars

Q@ Venus

§ Mercury

©® Sun

Y Moon

€ Earth

§ ascending node
¥ descending node

On ‘sexagesimal’ representations such as 6,13;10,0,58 see pp. 6-7.

For the mathematical symbols)| and ||| (both meaning ‘is similar t0’) and = (“is

congruent to’) see p. 17.

For ‘M. T. I' and ‘M. T. II’ see p.. 18.

For manuscript abbreviations see pp. 3-4.
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10.
1.
12.
13.
14.
15.
16.

—

5.

6.

Contents of the Almagest’

page
BOOK I
Preface 35
On the order of the theorems 37
That the heavens move like a sphere 38
That the earth, too, taken as a whole, is sensibly spherical 40
That the earth is in the middle of the heavens 41
That the earth has the ratio of a point to the heavens 43
That the earth does not have any motion from place to place,
either . 43
That there are two different primary motions in the heavens 45
On the individual concepts 47
On the size of chords ’ 48
Table of chords 57
On the arc between the solstices 61
Preliminaries for spherical proofs 64
On the arcs between the equator [and the ecliptic] 69
Table of inclination 72
On rising-times at sphaera recta 71
BOOK II

On the general location of our part of the inhabited world 75
Given the length of the longest day, how to find the arcs of the
horizon cut off between the equator and the ecliptic .76
If the same quantities be given, how to find the elevation of the
pole, and vice versa 77
How to compute for what regions, when, and how often the sun
reaches the zenith . 80
How one can derive the ratios of the gnomon to the equinoctial
and solsticial noon shadows from the above-mentioned quantities 80
Exposition of the special characteristics, parallel by parallel 82

* These lists of the chapter headings are found in the mss. at the beginning of each book preceded
by the words ‘The following are the contents of Book 7 of Ptolemy’s mathematical treatise’. [ believe
that the division into chapters and the chapter headings are later additions (see Introduction p.

5).
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Contents: Books II-1V

. On simultaneous risings of arcs of the ecliptic and equator at

sphaera obliqua

. Layout of the tables of rising-times from parallel to parallel?
. On the particular features which follow from the rising-times
10.
11.
12.

On the angles between the ecliptic and the meridian

On the angles between the ecliptic and the horizon

On theangles and arcs formed with the same circle [the ecliptic]
by a circle drawn through the poles of the horizon

. Layout of the proposed angles and arcs, parallel by parallel

BOOK IiI

. On the length of the year

. Layout of the tables of the mean motions of the sun
. On the hypotheses for uniform circular motion

. On the apparent anomaly of the sun

On the construction of a table for individual subdivisions of the
anomaly

. Table of the sun’s anomaly

On the epoch of the sun’s mean motion

. On the calculation of the solar position
. On the inequality in the [solar] days

BOOK IV

The kind of observations which one must use to examine lunar
phenomena

. On the periods of the moon

On the individual mean motions of the moon

. Layout of the tables comprising the mean positions of the moon

That in the simple hypothesis of the moon, too, the same
phenomena are produced by both eccentric and epicyclic
hypotheses :

. Demonstration of the first, simple anomaly of the moon
. On the correction of the mean positions of the moon in

longitude and anomaly

. On the epoch of the mean motions of the moon in longitude

and anomaly

. On the correction of the mean positions in latitude of the moon,

and their epoch

page

100

105
110

114
122

131
142
141

153

157
167
166
169
169

173
174
179
182

180

190

204

204

205

? Most mss., followed by Heiberg, read at H86,20 xavoviov t@v katd Sekapotpiav napdAiniov,
which is untranslatable. I read with D xavoviev t@v xara napdiiniov. Someone who compared
the text at II 8 (H 134,1), xavoviov tdv xatd dexapotpiav dvagop@v, imported Sexaporpiav
here and tried to combine the two inconsistent descriptions.
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16.
17.
18.
19.
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Contents: Books IV-VI

[Method of] calculation and table of the first, simple anomaly of
the moon®

That the difference in the size of the lunar anomaly according to
Hipparchus is due not to the different hypotheses employed, but
to his calculations

BOOK V

. On the construction of an ‘astrolabe’ instrument
. On the hypothesis for the double anomaly of the moon

On the size of the moon’s anomaly which is related to the sun
On the ratio of the eccentricity of the moon'’s circle

On the ‘direction’ of the moon’s epicycle

How the true position of the moon can be calculated
geometrically {rom the periodic motions

Construction of a table for the complete lunar anomaly
Table of the complete lunar anomaly

On the complete calculation of the moon'’s position -

. That the difference at the syzygies due to the moon’s

eccentre is negligible

. On the moon’s parallaxes ’

On the construction of a parallactic instrument

. Demonstration of the distances of the moon

On the ratio of the apparent diameters of sun, moon and
shadow at the syzyvgies

. On the distance of the sun, and other consequences of the

demonstration of that

On the sizes of sun. moon and earth

On the individual parallaxes of sun and moon
Parallax table

On the determination of the parallaxes

BOOK V1

. On conjunctions and oppositions of sun and moon
. Construction of wables of mean syzygies
. Layout of the tables

How to determine the mean and true syzygies
On the ecliptic limits of sun and moon

. On the interval of months between eclipses
. Construction of eclipse tables

29
page

210

211

217
220
222
225
226

233
234
238
237

239
243
244
247

255
257
258
265
264

275
275
278
277
282
287
294

*In the text the ‘method of calculation’ is explained at the end of ch. 9, and ch. 10 consists solely of
the table. This variation is perhaps a remnant of a different chapter division. Cf. Introduction p.

5.



30

e O3 N —

w

B O N

Contents: Books VI-1X

. Layout of the eclipse tables

. Determination of lunar eclipses
10.
11.
12.
13.

Determination of solar eclipses

On the angles of inclination at eclipses
Display of diagrams for the inclinations
Determination of the inclinations

BOOK VII

. That the fixed stars always maintain the same position relative to

each other

. That the sphere of the fixed stars, too, performs a rearward

motion along the ecliptic

. That the rearward motion of the sphere of the fixed stars, too,

takes place about the poles of the ecliptic

. On the method used to record [the positions of] the fixed stars
. Tabular layout of the constellations in the northern hemisphere

BOOK VIII

. Tabular lavout of the constellations in the southern hemisphere
. On the situation of the circle of the Milky Way

. On the construction of a solid globe

. On the configurations particular to the fixed stars

. On simultaneous risings, culminations and settings of the fixed

stars

. On first and last visibilities of the fixed stars

BOOK IX

. On the order of the spheres of sun, moon and the five planets
. On our purpose in the hypotheses of the planets

. On the periodic returns of the five planets

. Tables of the mean motions in longitude and anomaly

of the five planets

. Preliminary notions [necessary] for the hypotheses

of [the five planets]

. On the type of and differences between the hypotheses
. Demonstration of [the position of] the apogee of Mercury and

of its displacement

. That the planet Mercury, too, comes closest to the earth twice in

one revolution

. On the ratio and amount of its [Mercury’s] anomalies
10.
11

On the correction of its periodic motions
On the epoch of its periodic motions

page
306
305
310
313
319
318

321

327

329
339
341

371
400
404
407

410
413

419
420
423

427

426
443

449

453
456
461
467



SNl S

© @ o

10.
11.

12.

SR N N N R

S 0@

Contents: Books X-XII

BOOK X

. Demonstration of [the position of] the apogee of the planet Venus
. On the size of its epicycle

On the ratios of the eccentricities of the planet

. On the correction of the periodic motions of the planet
. On the epoch of its periodic motions
. Preliminaries for the demonstrations concerning the other

planets

. Demonstration of the eccentricity and apogee [position] of Mars

Demonstration of the size of the epicycle of Mars
On the correction of the periodic motions of Mars

. On the epoch of its periodic motions

BOOK XI

. Demonstration of the eccentricity and apogee [position] of

Jupiter

. Demonstration of the size of its epicycle
. On the correction of its periodic motions ,

On the epoch of its periodic motions

Demonstration of Saturn’s eccentricity and [the position of] its
apogee

Demonstration of the size of its epicycle

On the correction of its periodic motions

On the epoch of its periodic motions

. How the true positions can be found geometrically from the

periodic motions

Method of constructing tables for the anomalies

Layout of the tables for the determination of the positions in
longitude of the live planets

On the computation of the longitude of the five planets

BOOK XII

. On the preliminaries for the retrogradations
. Demonstration of the retrogradations of Saturn
. Demonstration of the retrogradations of Jupiter

Demonstration of the retrogradations of Mars
Demonstration of the retrogradations of Venus

. Demonstration of the retrogradations of Mercury
. Construction of a table for the stations
. Layout of the tablé of the stations

page

469
470

472

474
479

480
484
499
502
505,

507
520
522
525

525
538
541
543

544
545

549
554

555
562
569
572
575
-578
583
588



32

10.

N

B I A ol

10.

11

Contents: Books XII-XI1II

. Demonstration of the greatest elongations from the sun of Venus

and Mercury
Layout of the table of the greatest elongations from the sun of
Venus and Mercury

BOOK XIII

. On the hypotheses for the positions in latitude of the five planets
. On the type of the motions-in inclination and slant according to

the hypotheses

On the amount of the inclination and slant for each [planet]
Construction of the tables for the individual positions in latitude
Layout of the tables for the computations in latitude
Computation of the deviation in latitude for the five planets

On the first and last visibilities of the five planets

Venus and Mercury are also in accordance with the hypotheses
Method of determining the individual elongations from the sun

five planets
Epilogue of the treatise

page
587

596

597

599
601
605
632
635
636

645

647
647




Translation

of the
ALMAGEST







Book I

1. {Preface}*

The true philosophers, Syrus,® were, I think, quite right to distinguish the
theoretical part of philosophy from the practical. For even if practical
philosophy, before it is practical, turns out to be theoretical,® nevertheless one
can see that there is a great difference between the two: in the first place, it is
possible for many people to possess some of the moral virtues even without being
taught, whereas it is impossible to achieve theoretical understanding of the
universe without instruction; furthermore, one derives most benefit in the first
case [practical philosophy] from continuous practice in actual affairs, but in the
other [theoretical philosophy] from making progress in the theory. Hence we
thought it fitting to guide our actions (under the impulse of our actual ideas[of H5
what is to be done])) in such a way as never to forget, even in ordinary affairs, to
strive for a noble and disciplined disposition, but to devote most of our time to
intellectual matters, in order to teach theories, which are so many and
beautiful, and especially those to which the epithet ‘mathematical’ is particu-
larly applied. For Aristotle divides theoretical philosophy too, very fittingly,
into three primary categories, physics, mathematics and theology.” For
everything that exists is composed of matter, form and motion; none of these
[three] can be observed in its substratum by itself, without the others: they can
only be imagined. Now the first cause of the first motion of the universe, if one-
considers it simply, can be thought of as an invisible and motionless deity; the
division {of theoretical philosophy] concerned with investigating this {can be
called] ‘theology’, since this kind of activity, somewhere up in the highest
reaches of the universe, can only be imagined, and is completely separated from

-

*This ‘philosophical’ preface and its relationship to Ptolemy’s attitude to philosophy is discussed
by Boll, Studien 68-76, to which the reader is referred for the relevant passages in ancient literature.
The general standpoint is Aristotelian.

3Syrus is also the addressee of a number of other works by Ptolemy (see Toomer{5] 187). Nothing
is known about him. The name is very common in (but not confined 10) Greco-Roman Egypt. The
statement in a scholion to the Tetrabiblos (quoted by Boll, Studien 67, n. 2) that some say he was a
fictitious person, others that he was a doctor, merely reveals that he was equally unknown in late
antiquity.

6 '(I]‘hcon in his commentary (Rome I 320, 13-14) givespnoi . . . cupPefnxévarl 18 mpaxnikd 1o
np6TEPOV aLTOD 1oL BewpnTikoD twydvelv. Thisisa paraphrasc rather than a different reading, -
but shows thzt he understood the text as 1 have translated it. By this obscure expression I take
Ptolemy to mean that before actually practising virtues one must have some concept of them (even
though this is innate rather than taught)

’E. g Metaphysics E 1, 1026a 18 fI., dote tpeigav €iev priocogial Bewpntikai, padnparix,

puowkt, Beoloyiky.
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perceptible reality. The division [of theoretical philosophy] which investigates
material and ever-moving nature, and which concerns itself with ‘white’, ‘hot’,
‘sweet’, ‘soft’ and suchlike qualities one may call ‘physics’; such an order of
being is situated (for the most part) amongst corruptible bodies and below the
lunar sphere. That division [of theoretical philosophy] which determines the
nature involved in forms and motion from place to place, and which serves to
investigate shape, number, size, and place, time and suchlike, one may define as
‘mathematics’. Its subject-matter falls as it were in the middle between the
other two, since, firstly, it can be conceived of both with and without the aid of
the senses, and, secondly, it is an attribute of all existing things without
exception, both mortal and immortal: for those things which are perpetually
changing in their inseparable form, it changes with them, while for eternal
things which have an aethereal® nature, it keeps their unchanging form
unchanged.

From all this we concluded:’® that the first two divisions of theoretical
philosophy should rather be called guesswork than knowledge, theology
because of its completely invisible and ungraspable nature, physics because of
the unstable and unclear nature of matter; hence there is no hope that
philosophers will ever be agreed about them; and that only mathematics can
provide sure and unshakeable knowledge to its devotees, provided one
approaches it rigorously. For its kind of proof proceeds by indisputable
methods, namely arithmetic and geometry. Hence we were drawn to the
investigation of that part of theoretical philosophy, as far as we were able to
the whole of it, but especially to the theory concerning divine and heavenly
things. For that alone is devoted to the investigation of the eternally
unchanging. For that reason it too can be eternal and unchanging (which is a
proper attribute of knowledge) in its own domain, which is neither unclear nor
disorderly. Furthermore it can work in the domains of the other [two divisions
of theoretical philosophy] no less than they do. For this is the best science to help
theology along its way, since it is the only one which can make a good guess at
[the nature of] that activity which is unmoved and separated: [it can do this
because] it is familiar with the attributes of those beings'® which are on the one
hand perceptible, moving and being moved, but on the other hand eternal and
unchanging, [I mean the attributes] having to do with motions and the
arrangements of motions. As for physics, mathematics can make a significant
contribution. For almost every peculiar attribute of material nature becomes
apparent from the peculiarities of its motion from place to place. [ Thus one can
distinguish] the corruptible from the incorruptible by [whether it undergoes]
motion in a straight line or in a circle, and heavy from light, and passive from
active, by [whether it moves] towards the centre or away from the centre. With

8-aethereal’ (aiBepwdng) has a precise meaning in Aristotelian physics: everything above the
sphere of the moon is composed of an *incorruptible’ substance, unlike anything known on earth in
its consistency (very thin) and in its natural motion (circular). See I 3 p. 40. One of the names for
this substance is "aether’, another ‘fifth essence’. See Campanus IV n. 56, pp. 394-5.

°In this exaltation of mathematics above the other two divisions of philosophy Ptolemy parts
company with Aristotle, for whom theology was the most noble pursuit for the human mind.

"®The heavenly bodies.
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regard to virtuous conduct in practical actions and character, this science,
above all things, could make men see clearly; from the constancy, order,

symmetry and calm which are associated with the divine, it makes its followers.

lovers of this divine beauty, accustoming themn and reforming their natures, asit
were, to a similar spiritual state.

It is this love of the contemplation of the eternal and unchanging which we
constantly strive to increase, by studying those parts of these sciences which
have already been mastered by those who approached them in a genuine spirit
of enquiry, and by ourselves attempting to contribute as much advancement as
has been made possible by the additional time between those people and
ourselves.!' We shall try to note down'? evervthing which we think we have
discovered up to the present time; we shall do this as concisely as possible and in
a manner which can be followed by those who have already made some progress
in the field."® For the sake of completeness in our treatment we shall set out
everything useful for the theory of the heavens in the proper order, but to avoid
undue length we shall merely recount what has been adequately established by
the ancients. However. those topics which have not been dealt with [by our
predecessors] at all, or not as usefully as they might have been, will be discussed
at length, to the best of our ability.

2. {On the order of the theorems}
In the treatise which we propose, then, the first order of business is to grasp the
relationship of the earth taken as a whole to the heavens taken asa whole.!* In
the treatment of the individual aspects which follows, we must first discuss the
position of the ecliptic'’ and the regions of our part of the inhabited world and
also the features differentiating each from the others due to the [varying]
latitude at each horizon taken in order.'® For if the theory of these matters is
treated first it will make examination of the rest easier. Secondly, we have to go
through the motion of the sun and of the moon, and the phenomena
accompanying these [motions);'” for it would be impossible to examine the
theory of the stars'® thoroughly without first having a grasp of these miatters.
Our final task in this way of approach is the theorv of the stars. Here too it
would be appropriate to deal first with the sphere of the so-called ‘fixed stars’,'®

" This notion of the advancement of science, and particularly astronomy. by the additional time
available is one to which Ptolemy recurs in the epilogue (XIII 11 p. 647), and also. in a specifically
astronomical context, at VII 1 p. 321 and VII 3 p. 329.

" ropvnpaticacbar. A Lmépvnua is a ‘memoir’. usually implying summary brevity. Ptolemy
recurs to this t0o in the cpilogue (XIII 11 p. 647).

13 Ptolemy assumes that his readers will have a certain competence. See Introduction p. 6.

'*1 3-8. On the logic of Ptolemy's order see Introduction pp. 5-6.

151 12-16. The mathematical section I 10-11 is not specifically mentioned here.

's Book IL

'7Books III-VI.

'8‘Stars’ here and throughout chs. 3-8 includes both fixed stars and planets (see Introduction p.
21) and also, sometimes, sun and moon.

9 Books VII-VIIL

H8

H9




H10

Hl1l

38 1 3. Sphericity of the heavens

and follow that by treating the five ‘planets’, as they are called.?’ We shall try to
provide proofs in all of these topics by using as starting-points and foundations,
as it were, for our search the obvious phenomena, and those observations made
by the ancients and in our own times which are reliable. We shall attach the
subsequent structure of ideas to this [foundation] by means of proofs using
geometrical methods.

The general preliminary discussion covers the following topics: the heaven is
spherical in shape, and moves as a sphere; the earth too is sensibly spherical in
shape, when taken as a whole; in position it lies in the middle of the heavens very
much like its centre; in size and distance it has the ratio of a point to the sphere of
the fixed stars; and it has no motion from place to place. We shall briefly discuss
each of these points for the sake of reminder.

3. {That the heavens move like a sphere}®!

It is plausible to suppose that the ancients got their first notions on these topics
from the following kind of observations. They saw that the sun, moon and other
stars were carried from east to west along circles which were always parallel to
each other, that they began to rise up from below the earth itself, as it were,
gradually got up high, then kept on going round in similar fashion and getting
lower, until, falling to earth, so to speak, they vanished completely, then, after
remaining invisible for some time, again rose afresh and set; and [they saw] that
the periods of these [motions], and also the places of rising and setting, were, on
the whole, fixed and the same.

What chiefly led them to the concept of a sphere was the revolution of the
ever-visible stars, which was observed to be circular, and always taking place
about one centre, the same [for all]. For by necessity that point became [for
them] the pole of the heavenly sphere: those stars which were closer to it
revolved on smaller circles, those that were farther away described circles ever
greater in proportion to their distance, until one reaches the distance of the stars
which become invisible. In the case of these, too, they saw that those near the
ever-visible stars remained invisible for a short time, while those farther away
remained invisible for a long time, again in proportion [to their distance]. The
result was that in the beginning they got to the aforementioned notion solely
from such considerations; but from then on, in their subsequent investigation,
they found that everything else accorded with it, since absolutely all
phenomena are in contradiction to the alternative notions which have been
propounded.

For if one were to suppose that the stars’ motion takes place in a straight line
towards infinity, as some people have thought,”? what device could one

% Books IX-XIII.

' See Pedersen 36-7. .

2 According to Theon's commentary (Rome II 338) this belief was Epicurean, but I know of no
other evidence. The only other relevant passage appears to be Xenophanes, Diels-Kranz A4la (the
sun really moves towards infinity).
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conceive of which would cause each of them to appear to begin their motion
from the same starting-point every day? How could the stars turn back if their

motion is towards infinity? Of, if they did turn back, how could this not be

obvious? [On such a hypothesis], they must gradually diminish insize until they
disappear, whereas, on the contrary, they are seen to be greater at the very
moment of their disappearance, at which time they are gradually obstructed
and cut off, as it were, by the earth’s surface.

But to suppose that they are kindled as they rise out of the earth and are
extinguished again as they fall to earth is a completely absurd hypothesis.?* For
even if we were to concede that the strict order in their size and number, their
intervals, positions and periods could be restored by such a random and chance
process; that one whole area of the earth has a kindling nature, and another an
extinguishing one, or rather that the same part [of the earth] kindles for one set
of observers and extinguishes for another set; and that the same stars are already
kindled or extinguished for some observers while they are not yet for others:
even if, I say, we were to concede all these ridiculous consequences, what could
we say about the ever-visible stars, which neither rise nor set? Those stars which
are kindled and extinguished ought to rise and set for observers everywhere,
while those which are not kindled and extinguished ought always to be visible
for observers everywhere. What cause could we assign for the fact that this is not
so? We will surely not say that stars which are kindled and extinguished for
some observers never undergo this process for other observers. Yet it is utterly
obvious that the same stars rise and set in certain regions [of the earth] and do
neither at others.

To sum up, if one assumes any motion whatever, except spherical, for the
heavenly bodies, it necessarily follows that their distances, measured from the
earth upwards, must vary, wherever and however one supposes the earth itself
to be situated. Hence the sizes and mutual distances of the stars must appear to
vary for the same observers during the course of each revolution, since at one
time they must be at a greater distance, at another at a lesser. Yet we see that no
such variation occurs. For the apparent increase in their sizes at the horizons®* is
caused, not by a decrease in their distances, but by the exhalations of moisture
surrounding the earth being interposed between the place from which we
observe and the heavenly bodies, just as objects placed in water appear bigger
than they are, and the lower they sink, the bigger they appear.

The following considerations also lead us to the concept of the sphericity, of
the heavens. No other hypothesis but this can explain how sundial constructions
produce correct results; furthermore, the motion of the heavenly bodies is the
most unhampered and free of all motions, and freest motion belongs among

‘2 Theon (Rome I1 340) ascribes this to Heraclitus. Otherwise it is attested for Xenophanes (Diels-
Kranz A38), and was admitted as one possible explanation by Epicurus (e.g. Letter to Pythocles 92)
and his followers.

2 Ptolemy refers to the well-known phenomenon that the sun and moon appear larger when closé-
to the horizon. He gives an incorrect physical and optical explanation here. In a later work (Optics
111 60, ed. Lejeune p. 116) he correctly explains it as a purely psychological phenomenon. No doubt
instrumental measurement ofthe apparent diameters had convinced him that the enlargement is
entirely illusory.
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plane figures to the circle and among solid shapes to the sphere; similarly, since
of different shapes having an equal boundary those with more angles are greater
[in area or volume], the circle is greater than[all other] surfaces, and the sphere
greater than [all other] solids;? [likewise] the heavens are greater than all other
bodies. .

Furthermore, one can reach this kind of notion from certain physical
considerations. E.g., the aether is, of all bodies, the one with constituent parts
which are finest and most like each other; now bodies with parts like each other
have surfaces with parts like each other; but the only surfaces with parts like each
other are the circular, among planes, and the spherical, among three-
dimensional surfaces. And since the aether is not plane, but three-dimensional,
it follows that it is spherical in shape. Similarly, nature formed all earthly and
corruptible bodies out of shapes which are round but of unlike parts, but all
aethereal and divine bodies out of shapes which are of like parts and spherical.
For if they were llat or shaped like a discus®® they would not always display a
circular shape to all those observing them simultaneously from different places
on earth. For this reason it is plausible that the aether surrounding them, too,
being of the same nature, is spherical, and because of the likeness of its parts
moves in a circular and uniform fashion.

4. {That the earth 100, taken as a whole, is sensibly spherical}®’

That the earth, too, taken as a whole,?® is sensibly spherical can best be grasped
from the following considerations. We can see, again, that the sun, moon and
other stars do not rise and set simultaneously for evervone on earth, but do so
earlier for those more towards the east, later for those towards the west. For we
find that the phenomena at eclipses, especially lunar eclipses,?® which take
place at the same time [for all observers], are nevertheless not recorded as
occurring at the same hour (that is at an equal distance from noon) by all
observers. Rather, the hour recorded by the more easterly observers is always
later than that recorded by the more westerly. We find that the differences in
the hour are proportional to the distances between the places [of observation].
Hence one can reasonably conclude that the earth’s surface is spherical,
because its evenly curving surface {for so it is when considered as a whole) cuts
off [the heavenly bodies] for each set of observers in turn in a regular fashion.

If the earth’s shape were any other, this would not happen, as one can see
from the following arguments. If it were concave, the stars would be seen rising
first by those more towards the west; if it were plane, they would rise and set

% These propositions were proved in a work by Zenodorus (carly second century B.C, see
Toomcr[l]) from which extensive excerpts are given by (among others) Theon (Rome Il 355-79).
There is a good summary in Heath HGM 11 207-13.

% The only relevant passage I know is Empedocies, Diels-Kranz A60, who maintained that the
moon is disk-shaped.

*"See Pedersen 37-9.

28‘taken as a whole™: ignoring local irregularities such as mountams, which are negligible in
comparison to the total mass.

#The timings for solar eclipses are complicated by parallax.
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simultaneously for everyone on earth; if it were triangular or square or any-
other polygonal shape, by a similar argument, they would rise and set simul-
taneously for all those living on the same plane surface. Yet it is apparent that
nothing like this takes place. Nor could it be cylindrical, with the curved surface
in the east-west direction, and the flat sides towards the poles of the universe,
which some might suppose more plausible. This is clear from the following: for
those living on the curved surface none of the stars would be ever-visible, but
either all stars would rise and set for all observers, or the same stars, for an equal
[celestial] distance from each of the poles, would always be invisible for all
observers. In fact, the further we travel toward the north, the more® of the
southern stars disappear and the more of the northern stars appear. Hence it is
clear that here too the curvature of the earth cuts off {the heavenly bodies] in a
regular fashion in a north-south direction. and proves the sphericity [of the
earth] in all directions.

There is the further consideration that if we sail towards mountains or

elevated places from and to any direction whatever, they are observed to
increase gradually in size as if rising up from the sea itself in which thev had
previously been submerged: this is due to the curvature of the surface of the
water.

5. {That the earth is in the middle of the heavens}*'

Once one has grasped this, if one next considers the position of the earth, one
will find that the phenomena associated with it could take place only if we
assume that it is in the middle of the heavens. like the centre of a sphere. For if
this were not the case, the earth would have to be either

[a] not on the axis [of the universe] but equidistant from both poles, or
[b] on the axis but removed towards one of the poles, or
[c] neither on the axis nor equidistant from both poles.

Against the first of these three positions militate the following arguments. If
we imagined [the earth] removed towards the zenith or the nadir of some
observer, then, if he were at sphaera recta, he would never experience equinox,
since the horizon would always divide the heavens into two unequal parts, one
above and one below the earth; if he were at sphaera obliqua, either, again,
equinox would never occur at all, or, [if it did occur,] it would not be at a
position halfway between summer and winter solstices, since these intervals
would necessarily be unequal, because the equator, which is the greatest of all
parallel circles drawn about the poles of the [daily] motion, would no longer be
bisected by the horizon; instead [the horizon would bisect] one of the circles
parallel to the equator, either to the north or to the south of it. Yet absolutely
everyone agrees that these intervals are equal everywhere on earth, since
[everywhere] the increment of the longest day over the equinoctial day at the

% Reading hgiova (with D) for 1 mieiova at H16,9. Corrected by Manitius.
31See Pedersen 39-42.
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summer solstice is equal to the decrement of the shortest day from the
equinoctial day at the winter solstice. But if, on the other hand, we imagined the
displacement to be towards the east or west of some observer, he would find that
the sizes and distances of the stars would not remain constant and unchanged at
eastern and western horizons, and that the time-interval from rising to
culmination would not be equal to the interval from culmination to setting.
This is obviously completely in disaccord with the phenomena.

Against the second position, in which the earth is imagined to lie on the axis
removed towards one of the poles, one can make the following objections. If this
were so, the plane of the horizon would divide the heavens into a part above the
earth and a part below the earth which are unequal and always different for
different latitudes,’? whether one considers the relationship of the same part at
two different latitudes or the two parts at the same latitude. Only at sphaera recta
could the horizon bisect the sphere; at a sphaera obliqua situation such that the
nearer pole were the ever-visible one, the horizon would always make the part
above the earth lesser and the part below the earth greater: hence another
phenomenon would be that the great circle of the ecliptic would be divided into
unequal parts by the plane of the horizon. Yet it is apparent that this is by no
means so. Instead, six zodiacal signs are visible above the earth at all times and
places, while the remaining six are invisible; then again [at a later time] the
latter are visible in their entirety above the earth, while at the same time the
others are not visible. Hence it is obvious that the horizon bisects the zodiac,
since the same semi-circles are cut ofl by it, so as to appear at one time
completely above the earth, and at another [completely] below it.

And in general, if the earth were not situated exactly below the [celestial]
equator, but were removed towards the north or south in the direction of one of
the poles, the result would be that at the equinoxes the shadow of the gnomon at
sunrise would no longer form a straight line with its shadow at sunset in a plane
parallel to the horizon, not even sensibly.? Yet this is a phenomenon which is
plainly observed everywhere.

It is immediately clear that the third position enumerated is likewise
impossible, since the sorts of objection which we made to the first [two] will both
arise in that case.

To sum up, if the earth did not lie in the middle {of the universe], the whole
order of things which we observe in the increase and decrease of the length of
daylight would be fundamentally upset. Furthermore, eclipses of the moon
would not be restricted to situations where the moon is diametrically opposite
the sun (whatever part of the heaven [the luminaries are in]), since the earth
would often come between them when they were not diametrically opposite,
but at intervals of less than a semi-circle.

32 The word translated here and elsewhere as {terrestrial] latitude’ is kAipa, for the meaning of
which see Introduction p. 19.

3 The caveat ‘sensibly’ is inserted because the equinox is not a date but an instant of time.
Therefore on the day of equinox the sun does not rise due east and set due west (as is implied by the
rising and setting shadows lying on the same straight line). However, the difference would be
‘imperceptible to the senses’.
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6. {That the earth has the ratio of a point to the heavens}**

Moreover, the earth has, to the senses, the ratio of a point to the distance of the
sphere of the so-called fixed stars.?> A strong indication of this is the fact that the
sizes and distances of the stars, at any given time, appear equal and the same
from all parts of the earth everywhere, as observations of the same [celestial]
objects from different latitudes are found to have not the least discrepancy from
each other. One must also consider the fact that gnomons set up in any part of
the earth whatever, and likewise the centres of armillary spheres,*® operate like
the real centre of the earth; that s, the lines of sight [to heavenly bodies] and the
paths of shadows caused by them agree as closely with the [mathematical]
hypotheses explaining the phenomena as if they actually passed through the real
centre-point of the earth.

Another clear indication that this is so is that the planes drawn through the,
observer’s lines of sight at any point {on earth], which we call *horizons’, always
bisect the whole heavenly sphere. This would not happen if the earth were of
perceptible size in relation to the distance of the heavenly bodies; in that case
only the plane drawn through the centre of the earth could bisect the sphere,
while a plane through any point on the surface of the earth would always make
the section [of the heavens] below the earth greater than the section above it.

7. {That the earth does not have any motion from place to place, either}*’

One can show by the same arguments as the preceding that the earth cannot
have any motion in the aforementioned directions, or indeed ever move at all
from its position at the centre. For the same phenomena would result as would if
it had any position other than the central one. Hence I think it is idle to seek for
causes for the motion of objects towards the centre, once it has been so clearly
established from the actual phenomena that the earth occupies the middle
place in the universe, and that all heavy objects are carried towards the earth.
The following fact alone would most readily lead one to this notion [that all
objects fall towards the centre]. In absolutely all parts of the earth, which, as we
said, has been shown to be spherical and in the middle of the universe, the
direction®® and path of the motion (I mean the proper, [natural] motion) of all
bodies possessing weight is always and everywhere at right angles to the rigid
plane drawn tangent to the point of impact. It is clear from this fact that, if

3See Pedersen 42-3.

% Ptolemy qualifies the traditional terminology for the fixed stars as ‘so-called’ (xaAovpévev)
because they do in fact, according to him, have a motion (the modern ‘precession’). He develops the
point further at VII 1 p. 321, q.v. In general, however, he uses the traditional terminology without
qualification.

% An example of an armnllary sphere (xpixoth o@atpa) is the ‘astrolabe’ described in V 1. For
references to the term in other works see LS] s.v. xpixw1dg.

¥ See Pedersen 43-4.

* tpéovevoig, which I have translated ‘the direction of motion’ here, means basically dm:cnon
in which something points’ (for astronomical usages see V 5 p. 227 n. 19 and V1 11 p. 313 n. 77).
Thus it would also include here the direction of a plumb-line (cf. I 12 p. 62).
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44 1 7. Immobility of the earth

(these falling objects] were not arrested by the surface of the earth, they would
certainly reach the centre of the earth itself, since the straight line to the centre is
also always at right angles to the plane tangent to the sphere at the point of
intersection [of that radius] and the tangent.

Those who think it paradoxical that the earth, having such a great weight, is
not supported by anything and yet does not move, seem to me to be making the
mistake of judging on the basis of their own experience instead of taking into
account the peculiar nature of the universe. They would not, I think, consider
such a thing strange once they realised that this great bulk of the earth, when
compared with the whole surrounding mass [of the universe], has the ratio of a
point to it. For when one looks at it in that way, it will seem quite possible that
that which is relatively smallest should be overpowered and pressed in equally
from all directions to a position of equilibrium by that which is the greatest of all
and of uniform nature. For there is no up and down in the universe with respect
to itself,*® any more than one could imagine such a thing in asphere: instead the
proper and natural motion of the compound bodies in it is as tollows: light and
rarefied bodies drift outwards towards the circumference, but seem to move in
the direction which is ‘up’ for each observer, since the overhead direction for all
of us, which is also called ‘up’. points towards the surrounding surface;* heavy
and dense bodies, on the other hand, are carried towards the middle and the
centre, but seem to fall downwards, because, again, the direction which is for all
us towards our feet, called ‘down’, also points towards the centre of the earth.
These heavy bodies, as one would expect, settle about the centre because of
their mutual pressure and resistance, which is equal and uniform from all
directions. Hence, too, one can see that it is plausible that the earth, since its
total mass is so great compared with the bodies which fall towards it, can remain
motionless under the impact of these very small weights (for they strike it from
all sides), and receive, as it were, the objects falling on it. If the earth had a single
motion in common with other heavy objects, it is obvious that it would be
carried down faster than all of them because of its much greater size: living
things and individual heavy objects would be left behind, riding on the air, and
the earth itself would very soon have fallen completely out of the heavens. But -
such things are utterly ridiculous merely to think of.

But certain people,*! {[propounding] what they consider a more persuasive
view, agree with the above, since they have no argument to bring against it, but
think that there could be no evidence to oppose their view if, for instance, they
supposed the heavens to remain motionless, and the earth to revolve from west
to east about the same axis [as the heavens], making approximately one
revolution each day;* or if they made both heaven and earth move by any
amount whatever, provided, as we said, it is about the same axis, and in such a

* Reading avtév (with D, Is) for abtriv at H23,1.

#1¢ is not clear to me whether Ptolemy means the outmost boundary of the universe or merely the
surface (of the ‘aether’) surrounding the earth.

*! Heraclides of Pontos (late fourth century B.C.) is the earliest certain authority for the view that
the earth rotates on its axis. See HAMA 11 694-6. It was also adopted by Aristarchus as part of his
more radical heliocentric hypothesis.

* ‘approximately’ because one revolution takes place in a sidereal, not a solar day.
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way as to preserve the overtaking of one by the other. However, they do not
realise that, although there is perhaps nothing in the celestial phenomena
which would count against that hypothesis, at least from simpler considerations,
nevertheless from what would occur here on earth and in the air, one can see
that such a notion is quite ridiculous. Let us concede to them [for the sake of
argument] that such an unnatural thing could happen as that the most rare and
light of matter should either not move at all or should move in 2 way no different
from that of matter with the opposite nature (although things'in the air, which
are less rare [than the heavens] so obviously move with a more rapid motion
than any earthy object); [let us concede that] the densest and heaviest objects
have a proper motion of the quick and unilorm kind which they suppose
(although, again, as all agree, earthy objects are sometimes not readily moved
even by an external force). Neverthcless, they would have to admit that the
revolving motion of the earth must be the most violent of all motions associated
with it, seeing that it makes one revolution in such a short time; the result would
be that all objects not actually standing on the earth would appear to have the
same motion, opposite to that of the earth: neither clouds nor other flying or
thrown objects would ever be seen moving towards the east, since the earth’s
motion towards the east would always outrun and overtake them, so that all
other objects would seem to move in the direction of the west and the rear. But if
they said that the air is carried around in the same direction and with the same
speed as the earth, the compound objects in the air would none the less always
seem to be left behind by the motion of both [earth and air]‘; or if those objects
too were carried around, fused, as it were. to the air, then they would never
appear to have any motion either in advance or rearwards: they would always
appear still, neither wandering about nor changing position, whether they were
flving or thrown objects. Yet we quite plainly see that they do undergo all these
kinds of' motion, in such a way that they are not even slowed down or speeded up
at all by any motion of the earth.

8. {That there are tico different primary motions in the heavens}**

It was necessary to treat the above hypotheses first as an introduction to the
discussion of particular topics and what follows after. The above summary
outline of them will suffice. since they will be completely confirmed and further
proven by the agreement with the phenomena of the theories which we shall
demonstrate in the following sections. In addition to these hypotheses, it is
proper, as a further preliminary, to introduce the following general notion, that
there are two different primary motions in the heavens. One of them is that
which carries everything from east to west: it rotates them with an unchanging
and uniform motion along circles parallel to each other, described, as is
obvious, about the poles of this sphere which rotates everything uniformly. The
greatest of these circles is called the ‘equator’,** because it is the only [such

*3See Pedersen 45.
*‘equator’: ionuepvdg, literally ‘of equal day’ or ‘equinoctial’. See Introduction p. 19.

H25

H26




H27

H28

H29

46 [ 8. Two primary motions in the heavens

parallel circle] which is always bisected by the horizon (which is a great circle),
and because the revolution which the sun makes when located on it produces
equinox everywhere, to the senses. The other motion is that by which the
spheres of the stars perform movements in the opposite sense to the first motion,
about another pair of poles, which are different from those of the first rotation.
We suppose that this is so because of the following considerations. When we
observe for the space of any given single day, all heavenly objects whatever are
seen, as far as the senses can determine, to rise, culminate and set at places
which are analogous and lie on circles parallel to the equator; this is
characteristic of the first motion. But when we observe continuously without
interruption over an interval of time, it is apparent that while the other stars
retain their mutual distances and (for a long time) the particular characteristics
arising from the positions they occupy as a result of the first motion,* the sun,
the moon and the planets have certain special motions which are indeed
complicated and different from each other, but are all, to characterise their
general direction, * towards the east and opposite to [the motion of] those stars
which preserve their mutual distances and are, as it were, revolving on one
sphere.

Now if this motion of the planets too took place along circles parallel to the
equator, that is, about the poles which produce the first kind of revolution, it
would be suflicient to assign a single kind of revolution to all alike, analogous to
the first. For in that case it would have seemed plausible that the movements
which they undergo are caused by various retardations, and not by a motion in
the opposite direction. But as it is. in addition to their movement towards the
east, they are seen to deviate continuously to the north and south [of the
equator]. Moreover the amount of this deviation cannot be explained as the

result of a uniformly-acting force pushing them to the side: from that point of

view it is irregular, but it is regular if considered as the result of [motion on} a
circle inclined to the equator. Hence we get the concept of such a circle, which is
one and the same for all planets, and particular to them. It is precisely defined
and, so to speak, drawn by the motion of the sun. but it is also travelled by the
moon and the planets. which always move in its vicinity, and do not randomly
pass outside a zone on either side of it which is determined for each body. Now
since this too is shown to be a great circle, since the sun goes to the north and
south of the equator by an equal amount, and since, as we said. the eastward
motion of all of the planets takes place on one and the same circle, it became
necessary to suppose that this second. different motion of the whole takes place
about the poles of the inclined circle we have defined [i.e. the ecliptic], in the
opposite direction to the first motion.

If, then, we imagine a great circle drawn through the poles of both the above-
mentioned circles, (which will necessarily bisect each of them, that is the
equator and the circle inclined to it [the ecliptic]. at right angles), we will have
four points on the ecliptic: two will be produced by [the intersection of] the

*These characteristics of the fixed stars are e.g. dates of first and last visibility. They are
unchanged ‘for a long time' because the eflect of precession is very slow.
**The qualification is inserted here to allow for the retrogradations of the planets.
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equator, ‘diametrically opposite each other; these are called ‘equinoctial’
points. The one at which the motion [of the planets] is from south to north is

called the ‘spring’ equinox, the other the ‘autumnal’. Two [other points] will be -
produced by [the intersection of] the circle drawn through both poles; these too,

obviously, will be diametrically opposite each other; they are called ‘tropical’
[or ‘solsticial’) points. The one south of the equator is called the ‘winter’
[solstice], the one north, the ‘summer’ [solstice}.

We can imagine the first primary motion, which encompasses all the other
motions, as described and as it were defined by the great circle drawn through
both poles [of equator and ecliptic] revolving, and carrying everything else with
it, from east to west about the poles of the equator. These poles are fixed, so to
speak, on the ‘meridian’ circle, which differs from the aforementioned [great]
circle in the single respect that it is not drawn through the poles of the ecliptic
too at all positions of the latter. Moreover, it is called ‘meridian’ because it is,
considered to be always orthogonal to the horizon.*’ For a circle in such a
position divides both hemispheres, that above the earth and that below it, into
two equal parts, and defines the midpoint of both day and night.

The second. multiple-part motion is encompassed by the first and encom-
passes the spheres of all the planets. As we said, it is carried around by the
aforementioned [first motion], but itself goes in the opposite direction about the
poles of the ecliptic, which are also fixed on the circle which produces the first
motion, namely the circle through both poles [of ecliptic and equator].
Naturally they [the poles of the ecliptic] are carried around ‘with it [the circle
through both poles]. and. throughout the period of the second motion in the
opposite direction, they always keep the great circle of the ecliptic. which is
described by that [second] motion, in the same position with respect to the

equator.®

9. {On the individual concepts}

Such, then are the necessary preliminary concepts which must be summarily set
out in our general introduction. We are now about to begin the individual
demonstrations, the {irst of which, we think, should be to determine the size of
the arc between the aforementioned poles [of the ecliptic and equator] along the
great circle drawn through them. But we see that it is {irst necessary to explain
the method of determining chords:* we shall demonstrate the whole topic
geometrically once and for all.

7 See Introduction p.19.

*My translation follows the interpretation of Theon (Rome II 447). Manitius (p. 24 n. a
wrongly considers to0 ypagopuévou 81° altig peyicTov xdt LoEoD kixAov interpolated, partly
because he misinterprets cuvtnpototv (which is used here in a way similar to cuvtnpoUoav at HI
6,10).

#<chords’: literally ‘straight lines in a circle’. On this term see Introduction p. 17.
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Book III

{ Preface}’

In the preceding part of our treatise we have dealt with those aspects of heaven
and earth which required, in outline, a preliminary mathematical discussion;

also the inclination of the sun’s path through the ecliptic, and the resultant

particular phenomena, both at sphaera recta and at sphaera obliqua for every
inhabited region. We think that we should [now] discuss, as the subject which
appropriately follows the above, the theory of the sun and moon, and go
through the phenomena which are a consequence of their motions. For none of
the phenomena associated with the [other] heavenly bodies can be completely
investigated without the previous treatment of these [two]. Furthermore, we
find that the subject of the sun’s motion must take first place amongst these [sun
and moon], since without that it would, again, be 1mpossxble to give a complete
discussion of the moon's theory from start to finish.

1. {On the length of the year}*

The very first of the theorems concerning the sun is the determination of the
length of the year. The ancients were in disagreement and confusion in their
pronouncements on this topic, as can be seen from their treatises, especially
those of Hipparchus, who was both industrious and a lover of truth. The main
cause of the confusion on this topic which even he displayed is the fact that, when
one examines the apparent returns {of the sun] to [the same] equinox or solstice,
one finds that the length of the year exceeds 365 days by less than {-day, but when
one examines its return to [one of] the fixed stars it is greater [than 365} days].
Hence Hipparchus comes to the idea that the sphere of the fixed stars too has a
very slow motion. which, just like that of the planets, is towards the rear with
respect to the revolution producing the first {daily] motion, which is that of a
[great] circle drawn through the poles of both equator and ecliptic.?

As for us, we shall show this is indeed the case, and how it takes place, in
our discussion of the fixed stars* (the theory of the fixed stars, too, cannot be

' D and part of the Arabic tradition (L, P, but not Q, T) begin chapter 1 at this point. On such -

variations, and the conclusion to be drawn, see Introduction p. 5.

?See HAMA 54-5, Pedersen 128-34.

* This characterisation of the daily motion by means of the rotation of a great circle xhrough the
poles of equator and echpuc refers back to I 8 p. 47.

*VII 2-3.
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yearly motions above and the hourly motions below, and the third will contain
the monthly motions above and the daily motions below. The numbers
representing time will be in the first [i.e. left-hand] section, and the
corresponding degrees, obtained by successive addition of the appropriate
amount for each [time-unit], in the second [i.e. right-hand] section. The tables
are as follows.

2. {Table of the mean motion of the sun}*® H210—15
[See pp. 142-3.]
3. {On the hypotheses for uniform circular motion}*® H216

Our next task is to demonstrate the apparent anomaly of the sun. But first we
must make the general point that the rearward displacements of the planets
with respect to the heavens are. in every case, just like the motion of the universe
in advance, by nature uniform and circular. That is to say, if we imagine the
bodies or their circles being carried around by straight lines, in absolutely every
case the straight line in question describes equal angles at the centre of its
revolution in equal times. The apparent irregularity [anomaly] in their motions
is the result of the position and order of those circles in the’ sphere of each by
means of which they carry out their movements, and in reality there is in essence
nothing alien to their eternal nature in the "disorder’ which the phenomena are
supposed to exhibit. The reason for the appearance of irregularity can be
explained by two hypotheses, which are the most basic and simple. When their
motion is viewed with respect to a circle imagined to be in the plane of the
ecliptic, the centre of which coincides with the centre of the universe (thus its

“centre can be considered to coincide with our point of view), then we can
suppose. either that the uniform motion of each [body] takes place on a circle
which is not concentric with the universe, or that they have such a concentric
circle, but their uniform motion takes place, not actually on that circle, but on
another circle, which is carried by the first circle, and [hence] is known as the
‘epicycle’. It will be shown that either of these hypotheses will enable [the
planets] to appear, to our eyes, to traverse unequal arcs of the ecliptic (which is
concentric to the universe) in equal times.

In the eccentric hypothesis: [see Fig. 3.1] we imagine the eccentric circle, on
which the body travels with uniform motion, to be ABGD on centre E, with
diameter AED, on which point Z represents the observer.*' Thus A is the
apogee, and D the perigee. We cut off equal arcs AB and DG, and join BE, BZ,
GE and GZ. Then it is immediately obvious that the body will traverse the arcs

2 Corrections to Heiberg’s text: H210, 23-5, column of fourths (for arguments 342, 360 and 378).
A misprint has disrupted the order, which should be A, va, 1, but has become va, 1B, A (51, 12, 30).
H215.38, thirds : e (35): Ag, as Is.

398ee HAMA 55-7, Pedersen 134-44.

1 ‘the observer’; literally ‘our point of view’.
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[l 2. Solar mean motion table

TABLE OF THE SUN’S MEAN MOTION

Distance {in Anomaly] from the Sun’s Apogee in II 5;30° to its Mean
Longitude in the Ist Year ot Nabonassar, 3 0;45° : 265:15°

i8-Year
Periods o , '
18 355 37 25 36 20 34 30
36 351 14 51 12 41 9 0
54 346 52 16 19 1 43 30
72 342 29 42 25 22 18 0
90 338 7 8 1 42 52 30
108 333 44 33 38 3 27 0
126 329 21 59 14 24 1 30
144 324 59 24 50 14 36 0
162 390 36 50 97 5 10 30
180 316 14 16 3 25 15 0
198 311 51 41 39 46 19 30
216 307 29 7 16 & 54 0
234 303 6 32 52 a7 28 30
252 208 43 58 28, 48 3 0
270 204 o1 24 5 1 8 37 30
288 289 58 19 41 | o9 12 0
306 285 36 15 1 17 49 46 30
394 281 13 Wi 54 10 | 0
342 276 51 6 1 30 30 55 30
360 972 28 32 6 51 30 0
378 268 5 57 0 43 112 4 30
396 263 43 23 ‘ 9 32 39 0
14 259 20 # 1 53 | 33 13 30
432 254 58 4 ] 32 o 18 0
450 950 35 0 8 34 09 30
168 246 13 500 w4 54 57 0
186 241 50 32 15 31 30
504 937 97 56 57 36 6 0
592 233 3 20 33 36 40 30
540 998 ¥ 18 10 17 15 0
558 294 20 13 16 37 19 30
576 219 57 39 22 58 24 0
594 215 35 4 59 18 58 30
612 21l 12 30 35 39 33 0
630 206 19 36 12 0 7 30
648 202 27 2l 18 20 42 0
666 198 4 47 94 41 16 3
684 193 42 13 1 1 51 0
702 189 19 38 37 22 25 30
720 184 57 4 13 43 0 0
738 180 34 29 50 3 34 30
756 176 11 55 2% 24 9 0
774 171 49 21 2 44 43 30
792 167 2 46 39 5 18 0
810 163 4 12 15 25 52 30
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—
Single
Years o s e see e reese sesens Months ot e e e s
1 359 145124 {45 | 21 8135 30 29 | 34 8136 |36 15| 30
2 359 [ 30|49 {30421 17|10 60 59 8117131121} 31 0
3 359 116 | 14 | 16 3(25445 90 88 |42 125|149 {48 46| 30
4 359 139 17213412 120 118 | 16 [ 34| 26 |25 2 0
5 358 | 47 314645142155 150 147 | 50 { 43 3 1117(30
6 358 | 32128 |32 61 51130 180 177 124 { 51] 39 [ 37| 33 0
7 358 (171531728 0 5 210 206 | 59 016 |13 ] 48| 30
8 358 3|18 21| 49 8 | 40 240 236 | 33 8152 |50 4 0
9 357 |48 [ 42 148 | 10| 17 | 15 270 266 7117129261 19} 30
10 357 | 34 71331312550 300 295 [ 41 | 26 6 213,41 0
11 357 .19 132 18| 52| 34|25 330 325 | 15134 |42 {38 50| 30
12 357 41|57 41131 43 0 360 354 |49 | 43| 19 | 1S 6 0
13 356 | S0} 21 1491 34| S1 | 35
14 356 | 35|46 | 34 | S6 0110
15 356 | 21 1112014 17 81| 45 Days ° ’ 0 enerrerarne veren
16 356 6136 513817120 | 0 59 g1 17 |13} 127 3L
17 355 | 52 01505925155 2 1 58116341261 25 2
18 355 137125136120 3430 3 2 5712445139} 37} 33
4 3 56 | 33 8 52| 50 4
N 5 4 55 41| 26 6 21 35
Hours ° ! e 6 5 54 {49143 {191 IS5 6
1 0 2127150143 3 1 7 6 53 | 58 0(32]|27] 37
2 0 41554126 6 2 8 7 53 61|17 |45 40 8
3 0 712332 9 9 3 9 8 52 114 | 34 (58] 52} 39
4 0 9 [ S51{22]52]12 5 10 9 S1 12215212 5110
5 0 121191335} 15 6 11 10 50 | 31 9 25| 17| 41
6 0 14 | 47 4|18 18 7 12 11 49 | 39]26 {38301 12
7 0 17 { 14 | 55 12 9 13 12 48 | 47 | 43 | S1 | 42| 43
8 0 19 | 42 14534 24 | 10 14 13 47 | 56 1 41 55| WK
9 0 2110362727111 15 14 | 47 4118 |18 71 45
10 0 24 1 38 {27110 30| 12 16 15 46 | 12135 |31} 20 16
11 0 27 611715313314 17 16 45 | 20| 52 |44 | 32| 47
12 0 29 | 34 81361 3615 18 17 |44 {29 9 57|45 18
13 0 32 115119} 31!16 19 18 43 {37127 |10} 571 49
14 0 34129 |50 214218 20 19 14245 44 | 24 .10 20
15 0 36|57 |40]45| 45 19 21 20 | 41| 54 1137 22 51
16 0 39 |25 31128} 48| 20 22 21 41 2118 150|357 227F
17 0 41 | 53 |22 | 11| 5121 23 22 40 | 10| 36 3147 53
18 0 44 {21 [ 12154 54 1 23 24 23 39 (1853117 0} 24
19 0 46 | 49 313715724 25 24 38 |27-1 10 |30 12| 55
20 0 49 | 16 | 54 | 21 025 26 25 37 135(27 (43| 25| 26
21 0 511 44 | 4S5 4 327 27 26 36 143 44 |56 37| 57
22 0 54121351 47 6|28 28 27 3552 2 91 50| 28
23 0 5614026 30 9129 29 28 35 0f 19|23 2159
24 0 59 817 13]12] 31 30 29 | 34 8136 |36 15] 30
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144 111 3. The eccentric hypothesis
A

0

Fig. 3.1

AB and GD in equal times. but will {in so doing] appear to have traversed
unequal ares of a circle drawn on centre Z. For
£ BEA = Z GED.
But £ BZA < £ BEA (or Z GED),
and £ GZD >/ GED (or £ BEA).

In the epicvclic hypothesis: we imagine [see Fig. 3.2] the circle concentric
with the ecliptic as ABGD on centre E. with diameter AEG. and the epicycle
carried by it, on which the body moves, as ZHOK on centre A.

Then here too it is immediately obvious that, as the epicycle traverses circle
ABGD with uniform motion, say from A towards B, and as the body traverses
the epicycle with uniform motion, then when the body is at points Z and ©. it
will appear to coincide with A, the centre of the epicycle, but when it is at other
points it will not. Thus when it is, e.g., at H, its motion will appear greater than
the uniform motion [of the epicycle] by arc AH, and similarly whenitisat K its
motion will appear less than the uniform by arc AK.

Now in this kind of eccentric hypothesis*® the least speed always occurs at the
apogee and the greatest at the perigee, since Z AZB [in Fig. 3.1] is always less
than £ DZG. But in the epicyclic hypothesis both this and the reverse are
possible. For the motion of the epicycle is towards the rear with respect to the
heavens, say from A towards B [in Fig. 3.2]. Now if the motion of the body on
the epicycle is such that it too moves rearwards from the apogee, that is from Z
towards H, the greatest speed will occur at the apogee, since at that point both

32 Prolemy is hinting at the existence of another kind of eccentric hypothesis, one which is
geometrically equivalent to that epicyclic hypothesis in which the sense of rotation is the same for
both planet and epicycle. But he does not discuss this until XII 1 (p. 555), where we learn that the
cquivalence was already known to Apollonius of Perge (c. 200 B.C.). See HAMA 149-
50. k
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G

Fig. 3.2

’

epicycle and body are moving in the same direction. But if the motion of the
body from the apogee is in advance on the epicycle, that is from Z towards K,
then the reverse will occur: the least speed will occur at the apogee, since at that
point the body is moving in the opposite direction to the epicycle.

Having established that, we must next make the additional preliminary
point that for bodies which exhibit a double anomaly both the above
hypotheses may be combined, as we shall prove in our discussions of such '
bodies, but for a body which displays a single invariant anomaly, a single one of
the above hypotheses will suffice; and [in this case] all the phenomena will be
represented, with no diflerence, by either hypothesis, provided that the same
ratios are preserved in both. By this I mean that the ratio, in the eccentric
hypothesis, of the distance between the centre of vision and the centre of the
eccentre to the radius of the eccentre, must be the same as the ratio, in the
epicyclic hypothesis, of the radius of the epicycle to the radius of the deferent;3

and furthermore that the time taken by the body, travelling towards therear, to  H220

traverse the immovable eccentre, must be the same as the time taken by the
epicycle, also travelling towards the rear, to traverse the circle with the observer
as centre [the deferent], while the body moves with equal [angular] speed about
the epicycle, but so that its motion at the apogee [of the epicycle] is in advance.

If these conditions are fulfilled, the identical phenomena will result from

either hypothesis. We shall briefly show this {[now] by comparing the ratios in™
abstract, and later by means of the actual numbers we shall assign to them for

$deferent’: see Introduction p. 21.
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the sun’s anomaly.?* I say then, first, that in both hypotheses, the greatest
difference between the uniform motion and the apparent, non-uniform motion
(which is also the notional position of the mean speed for the bodies)*® occurs
when the apparent distance from the apogee comprises a quadrant, and that
the time between apogee [position} and the above-mentioned mean speed
[position] is greater than the time between mean speed and perigee. Hence, for
the eccentric hypothesis always, and for the epicyclic hypothesis when the
motion at apogee is in advance, the time from least speed to mean is greater
than the time from mean speed to greatest; for in both hypotheses the slowest
motion takes place at the apogee. But [for the epicyclic hypothesis] when the
sense of revolution of the body is rearwards from the apogee on the epicycle, the
reverse is true: the time from greatest speed to mean is greater than the time
from mean to least, since in this case the greatest speed occurs at the apogee.

First, then, [see Fig. 3.3] let the body’s eccenter be ABGD on centre E, with
diameter AEG. On this diameter take the centre of the ecliptic, that is, the
position of the observer, at Z, and draw BZD through Z at right angles to AEG.
Let the positions of the body be B and D, so that, obviously, its apparent
distance {rom apogee A is a quadrant on cither side. We have to prove that the
greatest difference between mean and anomalistic motion takes place at points
B and D.

Join EB and ED.

It is immediately obvious that the ratio of £ EBZ to 4 right angles equals the

A

G

Fig. 3.3

H Reierence to 111 4 p. 157.

' Ptolemy never attempts to prove this statement about the position where the apparent motion
cquals the mean motion, but it is intuitively scen to be true from the epicyclic model. See HAMA 57,
Pedersen 143.
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ratio of the arc of the difference due to the anomaly*® to the whole circle; for
£ AEB subtends the arc of the uniform motion, and Z AZBsubtends the arcofthe
apparent, non-uniform motion, and the difference between them is Z EBZ..

I say, then, that no angle greater than these two {£ EBZ and £ EDZ] can be
constructed on line EZ at the circumference of circle ABGD.

[Proof: ] Construct at points © and K angles E®Z and EKZ, and join ®D, KD.
Then since, in any triangle, the greater side subtends the greater angle,*’
and ©Z >2ZD,
L L ODZ > £ DOZ.
But £ ED® = £ E®D, since E@ = ED [radiil].
Therefore, by addition, Z EDZ (=£ EBD) > £ E@Z.
Again, since DZ >KZ,
£ ZKD >/ ZDK.
But £ EKD = £ EDK, since EK = ED.
Therefore, by subtraction, £ EDZ (= £ EBZ) >/ EKZ.
Therefore it is impossible for any other angle to be constructed in the way
defined greater than those at points B and D. '

Simultaneously it is proven that arc AB, which represents the time from least
speed to mean, exceeds BG, which represents the time from mean speed to
greatest, by twice the arc comprising the equation of anomaly. For Z AEB
exceeds a right angle (£ EZB) by £ EBZ, and £ BEG falls short of a right angle
by the same amount.

To prove the same theorem again for the other hypothesis, let [Fig. 3.4] the
circle concentric with the universe be ABG on centre D and diameter ADB, and
let the epicycle which is carried around it in the same plane be EZH on centre
A. Let us suppose the body to be at H when its apparent distance from the
apogee is a quadrant. Join AH and DHG.

I'say that DHG is tangent to the epicycle; for that is the position in which the

difference between uniform and anomalistic motion is greatest.
[Proof:] The mean motion, counted from the apogee, is represented by Z EAH:
for the body traverses the epicycle with the same [angular] speed as the epicycle
traverses circle ABG. Furthermore the difterence between mean and apparent
motion is represented by £ ADH. Therefore it is clear that the amount by which
£ EAH exceeds £ ADH (namely £ AHD) represents the apparent distance of
the body from the apogee. But this distance is, by hypothesis, a quadrant.
Therefore £ AHD is a right angle, and hence line DHG is tangent to epicycle
EZH. Therefore arc AG, since it comprises the distance between the centre A
and the tangent, is the greatest possible difference due to the anomaly.

By the same reasoning, arc EH. which according to the sense of rotation on

*This expression is later used as a technical term for the angle corresponding to Z EBZ here, and
is usually translated ‘equation of anomaly’. See Introduction pp. 21-2.

*Precisely this statement, that the greater angle is subtended by the greater side, is the -
enunciation of Euclid I 19 (which Heiberg refers to ad loc.). But in fact what underlies Ptolemy'$*.

statement is that, if side a is greater than side 4, angle A is greater than angle B, which is Euclid I 18.
Perhaps we should adopt the reading of D, bnd thv peilova mhevpdv i peifov yovia droteiver
(‘the greater angle subtends the greater side’), and assume that the text has been assimilated to the
(wrong) Euclidean wording. '
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B

Fig. 3.4

the epicycle assumed here, represents the time from least speed to mean,
exceeds arc HZ, which represents the time from mean speed to greatest, by
twice arc AG. For if we produce DH to © and draw AK® at right anglesto EZ,
£ KAH = £ ADG,*
and arc KH = arc AG.»
And arc EKH is greater than a quadrant by arc KH,
while arc ZH is less than a quadrant by arc KH.
Q.E.D.
It is also true that the same effects will be produced by both hypotheses if one
takes a partial motion over the same stretch of time for both, whether one
considers the mean motion or the apparent, or the difference between them,
that is the equation of anomaly. The best way to see that is as follows.
[See Fig. 3.5.]* Let the circle concentric with the ecliptic be ABG on centre
D, and let the circle which is eccentric but equal to the concentre ABG be EZH
on centre ©. Let the common diameter through their centres D, @ and the

3 Euclid VI 8.

#To get a grammatical text I excise dpoia at H225,4. It was introduced (at an early period, since
it is reflected in the Arabic translations) as a correction of Ptolemy’s inaccurate (to the scholastic
mind) statement that arc KH equals arc AG. Since the arcs are on circles of different sizes, thcy are
technically only ‘similar’. An alternative correction would be icai pEv yiyvovra ai te b6 KAH
xai AAH yoviau (which is actually found in Theon's commentary ad loc., Rome I1I 868,8, but is
probably a paraphrase; it also seems to be behind L).

*The ligure in Heiberg (p. 225) wrongly omits the letter corrcspondmg to L (though this is found
in all mss.). Manitius, misied by this, ‘emended’ AA at H226,23 to the nonsensical ‘AB’.
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apogee E be EA®D. Cut off at random af arc AB on the concentre, and with
centre B and radius D@ draw the epicycle KZ. Join KBD.

I say that the body will be carried by both kinds of motion {i.e. according to -
both hypotheses] to point Z, the intersection of the eccentre and the epicycle, in

the same time in all cases (that is, the three arcs, EZ on the eccentre, AB on the

E

Fig. 3.5

concentre, and KZ on the epicycle, are all similar), and that the difference
between uniform and anomalistic motion, and the apparent positions of the
body, will turn out to be one and the same according to both hypotheses.
{Proof:] Join Z©, BZ and DZ.
Since, in the quadrilateral BDOZ, the opposite sides are equal, ZO to BD and
BZ 10 DO, BDOZ is a parallelogram.
Therefore £ EOZ = £ ADB = £ ZBK.

Therefore, since they are angles at the centre [of circles], the arcs subtended
by them are also similar, i.e.

-

Arc EZ of the eccentre || arc AB of the concentre || arc KZ of the epicycle.

Therefore the body will be carried by both kinds of motions in the same time
to the same point, Z, and will appear to have traversed the same arc AL of the
ecliptic from the apogee, and accordingly the equation of anomaly will be the
same in both hypotheses; for we showed that that equation is represented by
£ DZ® in the eccentric hypothesis and by Z BDZ in the epicyclic hypothesis, and
these two angles are alternate and equal, since, as we have shown, Z@ is parallcl -
to BD.

It is obvious that the same results will hold good for all distances [of the body
from the apogee]. For quadrilateral @ DZB will always be a parallelogram, and
[hence] the motion of the body on the epicycle will actually describe the

H226
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eccentric circle, provided the ratios*! are similar and their members equal in
both hypotheses.

Moreover, even if the members are unequal in size, provided their ratios are
similar, the same phenomena will resuit. This can be shown as follows.

As before {see Fig. 3.6] let the circle concentric with the universe be ABG on
centre D and the diameter, on which the body reaches apogee and perigee
positions. ADG. Let the epicycle be drawn on point B, at an arbitrary distance,
arc AB, from apogee A. Let the arc traversed by the body {on the epicycle] be
EZ, which is, obviously, similar to AB, since the revolutions on {both] circles
have the same period. Join DBE, BZ, DZ.

G

Fig. 3.6

Now it is immediately obvious that, according to this [epicyclic] hypothesis,
£ ADE will always equal Z ZBE, and the body will appear to lie on line DZ.

But I say that the body will also appear to lie on the same line DZ according
to the eccentric hypothesis, whether the eccentre is greater or smaller than the
concentre ABG, provided only that one assumes that the ratios are similar and
that the periods of revolution are the same.
[Proof:] Let the eccentre be drawn under the conditions we have described,
greater [than the concentre} as HO on centre K ([which must lie] on AG), and

*'The ratios are e:R and =R.
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smaller [than the concentre] as LM on centre N (this too [must lie on AGY).
Produce DZ as DMZ®, and DA as DLAH, and join ©K, MN.

Then since

DB:BZ = ©K:KD = MN:ND [by hypothesis],
and Z BZD = £ MDN (since DA is parallel to BZ); H229

the three triangles {ZDB,DOK,DMN] are equiangular,
and £ BDZ = £ DOK = £ DMN (angles subtended by corresponding sides).

Therefore DB, ®K and MN are parallel.

~ £ ADB =/ AKO =/ ANM.

Since these angles are at the centres of their circles, the arcs on them, AB, HO
and LM, will also be similar.

So it is true, not only that the epicycle has traversed arc AB in the same time
as the body has traversed arc EZ, but also that the body will have traversed arcs
HO and LM on the eccentres in that same time; hence in every case it will be
seen along the same line DMZ®, according to the epicyclic [hypothesis] at -
point Z, according to the greater eccentre at point ®. and according to the
smaller cccentre at point M. The same will hold true in all positions.

A further consequence is that where the apparent distance of the body from
apogee [at one moment] equals its apparent distance from perigee [at another],
the equation of anomaly will be the same at both positions.

{Proof:] In the eccentric hypothesis {see Fig. 3.7], we draw the eccentric circle

’

A

G

Fig. 3.7

ABGD on centre E and diameter AEG through apogee A. We suppose the, H230
observer to be located at Z, and draw an arbitrary {chord] BZD through Z, and
join EB and ED. Then the apparent positions [ of the body at B and D] will be
equal and opposite, that is the angle AZB from the apogee will be equal and
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opposite to angle GZD from the perigee; and the equation of anomaly will be
the same [in both cases), since
BE = ED, and £ EBZ = £ EDZ.
So the arc [AB] of mean motion counted from the apogee A will exceed the arc of
apparent motion (i.e. the arc subtended by angle AZB) by the same equation
[equal to Z EBZ] as the arc of mean motion counted from the perigee G is
exceeded by the arc of apparent motion (i.e. the [equal] arc subtended by
£ GZD). For
£ AEB >/ AZB, and £ GED < £ GZD.

In the epicyclic hypothesis [see Fig. 3.8] if, as before, we draw the concentre
ABG on centre D and diameter ADG, and the epicycle EZH on centre A, draw
an arbitrary line DHBZ, and join AZ and AH, then the arc AB representing the
equation of anomaly will be the same at both positions, i.e. whether the body is

G

Fig. 3.8

at Z or at H. And the distance of the body from the point on the ecliptic
corresponding to the apogee when it is at Z will be equal to its distance from the
point corresponding to the perigee when it is at H. For the arc of its apparent
distance from the apogee is represented by £ DZA, since, as we showed, this is
the difference between the mean motion and the equation of anomaly.*? And
the arc of its apparent distance from the perigee is represented by £ ZHA (for
this, too, is equal to the mean motion from the perigee plus the equation of
anomaly).
But £ DZA = £ ZHA, since AZ =-AH.

2/ DZA = £ EAZ-£ ADZ. Shown p. 147.
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Thus here toc we conclude that the mean motion exceeds the apparent near
the apogee (i.e. £ EAZ exceeds Z AZD) by the same equation (namely Z ADH)
as the mean motion is exceeded by the (same) apparent motion (i.e. Z HAD by
£ AHZ) near the perigee.

, Q.E.D.

4. {On the apparent anomaly of the sun}*®

Having set out the above preliminary theorems, we must add a further
preliminary thesis concerning the apparent anomaly of the sun. This hasto be a
single anomaly, of such a kind that the time taken from least speed to mean shall
always be greater than the time from mean speed to greatest, for we find that
this accords with the phenomena. Now this could be represented by either of the
hypotheses described above, though in case of the epicyclic hypothesis the
motion of the sun on the apogee arc of the epicycle would have to be in advance.
However, it would seem more reasonable to associate it with the eccentric
hypothesis, since that is simpler and is performed by means of one motion
instead of two.**

Our first task is to find the ratio of the eccentricity of the sun’s circle, that is,
the ratio which the distance between the centre of the eccentre and the centre of
the ecliptic (located at the observer) bears to the radius of the eccentre. We must
also find the degree of the ecliptic in which the apogee of the eccentre is located.
These problems have been solved by Hipparchus with great care.*> He assumes
that the interval from spring equinox to summer solstice is 94 days, and that the
interval from summer solstice to autumnal equinox is 92} days, and then, with
these observations as his sole data, shows that the line segment between the
above-mentioned centres [of eccentre and ecliptic] is approximately sith of the
radius of the eccentre, and that the apogee is approximately 244° (where the
ecliptic is divided into 360°) in advance of the summer solstice. We too, for our
own time, find approximately the same values for the times{taken by the sun to
traverse] the above-mentioned quadrants, and for those ratios. Hence it is clear
to us that the sun’s eccentre always maintains the same position relative to the
solsticial and equinoctial points.*®

In order not to neglect this topic, but rather to display the theorem worked
out according to our own numerical solution, we too shall solve the problem, for
the eccentre, using the same observed data, namely, as already stated, that the
interval from spring equinox to summer solstice comprises 944 days, and that

*$3See HAMA 57-8, Pedersen 144-9.

#On the desirability of simplicity in hypotheses see III 1 p. 136 with n.17.

* Reading peta ndong orovdfig (with D, Ar) at H233,1-2 for petd orouvdfig (‘with care’).

46 According to Ptolemy the sun’s apogee (unlike those of the five planets, as it later turns out, IX
7) does not share in the motion of precession. The reproaches that have been cast on Ptolemy (c.g.

by Manitius I 428-9) for failing to discover that the sun's apogee too has a motion through the:’

ecliptic are unjustified. To do that he would have needed observations of the time of equinox and
solstice far more accurate than those available (to the nearest §-day), and not only for his own time
but also for an ecarlier time. See the papers by Rome{3] and Petersen and Schmidt for a
mathematical demonstration of this.
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Book IX

1. {On the order of the spheres of sun, moon and the 5 planets)

Such, then, more or less, is the sum total of the chief topics one may mention as
having to do with the fixed stars, in so far as the phenomena [observed] up to

now provide the means of progress in our understanding. There remains, to

[complete] our treatise, the treatment of the five planets. To avoid repetition we
shall, as far as possible, explain the theory of the latter by means of an exposition
common [to all five], treating each of the methods [for all planets] together.
First, then, [to discuss] the order of their spheres, which are all situated {with
their poles] nearly coinciding with the poles of the inclined, ecliptic circle: we
see that almost all the foremost astronomers agree that all the spheresare closer
to the earth than that of the fixed stars, and farther from the earth than that of
the moon, and that those of the three [outer planets] are farther from the earth
than those of the other [two] and the sun, Saturn’s being greatest, Jupiter's the
next in order towards the earth, and Mars’ below that. But concerning the
spheres of Venus and Mercury, we see that they are placed below the sun’s by
the more ancient astronomers, but by some of their successors these too are placed
above [the sun’s],’ for the reason that the sun has never been obscured by them
[Venus and Mercury] either. To us, however, such a criterion seems to have an
element of uncertainty, since it is possible that some planets might indeed be
below the sun, but nevertheless not always be in one of the planes through the
sun and our viewpoint, but in another |plane], and hence might not be seen
passing in front ol it, just as in the case of the moon, when it passes below [the
sun] at conjunction, no obscuration results in most cases.” .
And since there is no other way, either, to make progress in our knowledge of
this matter, since none of the stars® has a noticeable parallax (which is the only
phenomenon from which the distances can be derived), the order assumed by
the older [astronomers] appears the more plausible. For, by putting the sun in
the middle, it is more in accordance with the nature [of the bodies] in thus

! There is a good deal of evidence for the identity of some of those who held the second opinion,
including Plato, Eratosthenes and Archimedes. For details on this and other ancient arrangements
see HAMA 11 690-3.

2].e. no transits of Venus or Mercury had been observed. Neugebauer has shown (HAMA 227-30)

that transits are in fact predictable from Ptolemy’s own theory. Ptolemy later seems to have realized -

this, for in the Planetary Hypotheses (ed. Goldstein 2,28,10-12) he says: ‘if a body of such small size (a3
a planet) were to occult a body of such large size and with so much light (as the sun), it would
necessarily be imperceptible, because of the smallness of the occulting body and the state of the parts
of the sun’s body which remain uncovered.” (Goldstein’s translation here, p.6, is inaccurate).

* This includes both fixed stars and planets.
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separating those which reach all possible distances irom the sun and those
which do not do so, but always move in its vicinity; provided only that it does
not remove the latter close enough to the earth that there can result a parallax of
any size.*

2. {On our purpose in the hypotheses of the planets)

So much, then, for the arrangements of the spheres. Now it is our purpose to
demonstrate for the five planets, just as we did for the sun and moon, that all
their apparent anomalies can be represented by uniform circular motions, since
these are proper to the nature of divine beings, while disorder and non-
uniformity are alien {to such beings]. Then it is right that we should think
success in such a purpose a greai thing, and truly the proper end oi the
mathematical part of theoretical philosophy.® But, on many grounds. we must
think that it is difficult, and that there is good reason why no-one before us has
vet succeeded in it.” For, (firstly], in investigations of the periodic motions of a
planet, the possible [inaccuracy] resulting from comparison of [two] obser-
vations {at each of which the observer may have committed a small
observational error) will, when accumulated over a continuous period. praduce
a noticeable difference [from the true state] sooner when the interval [between
the observations] over which the examination is made is shorter, and less soon
when it is longer. But we have records of planetary observations only from a
time which is recent in comparison with such a vast enterprise: this makes
prediction for a time many times greater [than the interval for which
observations are available] insecure. [Secondly], in investigation of the
anomalies, considerable confusion stems from the fact that it is apparent that
each planet exhibits two anomalies. which are moreover unequal both in their
amount and in the periods of their return: one [return) is observed to be related
to the sun, the other to the position in the ecliptic; but both anomalies are
continuously combined, whence it is difficult to distinguish the characteristics
of each individually. [It is] also [confusing] that most of the ancient [planetary]
observations have been recorded in a way which is difficult to evaluate, and
crude. For [1] the more continuous series of observations concern stations and
phases [i.e. first and last visibilities].” But detection of both of these particular

*In his Planetary Hypotheses (see Goldstein’s edition} Ptolemy proposes a system in which the
spheres of the planets are contiguous; thus the greatest distance from the earth attained by a planet
is equal to the least distance attained by the one next in order outwards. This appears to provide
support for the order he adopts here, since it results in a solar distance very nearly the same as that
obtained by a ditlerent method in .{/magest \" 15. Since this system also brings Mercury. at its least
distance. to the moon's greatest distance (64 earth-radii), Mercury ought to exhibit a considerahle
parallax, contrary to what is enunciated here.

*CL 11 p. 35. :

®We cannot doubt that not only planetary theories but planetary tables had been constructed
betore Ptolemy: the proot is supplied by Indian astronomy, which is based on Greek theories which
are largely, if not entirely, pre-Ptolemaic, and indeed by Ptolemy’s own reference to the *Aeon-
tables’ helow (p. 422). What he means is that all previous efforts were, by his criteria,
unsatisfactory .

“ Prolemy is certainly thinking of the Babylonian planetary observations, which are characteristi-
cally of this type. They have become available to us through the ‘diaries’ (see Sachs{2]). but to
Prolemy were probably known only through Hipparchus’ compilation (see p. 421).
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phenomena is fraught with uncertainty: stations cannot be fixed at an exact
moment, since the local motion of the planet for several days both before and
after the actual station is too small to be observable; in the case of the phases, not
only do the places [in which the planets are located] immediately become
invisible together with the bodies which are undergoing their first or last
visibility, but the times too can be in error, both because of atméspherical
differences and because of differences in the [sharpnessof] vision of the observers.
[2] In general, observations [of planets] with respect to one of the fixed stars,
when taken over a comparatively great distance, involve difficult computations
and an element of guesswork in the quantity measured, unless one carries them
out in a manner which is thoroughly competent and knowledgeable. This is not
only because the lines joining the observed stars do not always form right angles
with the ecliptic, but may form an angle of any size (hence one may expect
considerable error in determining the position in latitude and longitude, due to
the varying inclination of the ecliptic {to the horizon frame of reference]}; but
also because the same interval [between star and planet] appears to the observer
as greater near the horizon, and less near mid-heaven;® hence, obviously, the
interval in question can be measured as at one time greater, at another less than
it is in reality.

Hence it was, I think, that Hipparchus, being a great lover of truth, for all the
above reasons, and especially because he did not yet have in his possession such
a groundwork of resources in the form of accurate observations from earlier
times as he himself has provided to us.’ although he investigated the theories of
the sun and moon, and, to the best of his ability, demonstrated with every
means at his command that they are represented by uniform circular motions,
did not even make a beginning in establishing theories for the five planets, not at
least in his writings which have come down to us.'® All that he did was tomake a
compilation of the planetary observations arranged in a more useful way,'' and
to show by means of these that the phenomena were not in agreement with the
hypotheses of the astronomers of that time. For, we may presume, he thought
that one must not only show that each planet has a twofold anomaly, or that
each planet has retrograde arcs which are not constant, and are of such and
such sizes (whereas the other astronomers had constructed their geometrical
proofs on the basis of a single unvarying anomaly and retrograde arc); nor{that
it was sufficient to show] that these anomalies can in fact be represented either

8 This appears to be the only reference to the effect of refraction (if that is what it is) in the
Almagest. despite its obvious relevance e.g. to the observations of Mercury's greatest elongations in
IX 7. Ptolemy discusses it {as a theoretical problem) in some detail in Optics \" 23-30 (ed. Lejeune
237-42).

®This seems to imply that Hipparchus recorded planetary observations of his own, which
Ptolemy used to establish his theories. This may be true, but it is strange that Ptolemy cites not a
single such observation by Hipparchus. Could Ptolemy mean merely that Hipparchus had not "yet’
assembled the compilation of earlier planetary observations which he mentions just below?

!9The circulation of books in antiquity was so fortuitous that. even for one, like Ptolemy, who had
access to the great resources of the libraries at Alexandria, this was a necessary caveat.

"1 have little doubt that all the older planetary observations cited in the Almagest are derived
from this compilation (cf. p. 452 n.66), and that part of Hipparchus’ ‘rearrangement’ was to give
their dates in the Egyptian calendar. For a similar service he rendered for the listing of lunar eclipses
see HAMA 320-2].
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by means of eccentric circles or by circles concentric with the ecliptic, and
carrying epicycles, or even by combining both, the ecliptic anomaly being of
such and such a size, and the synodic anomaly of such and such (for these
representations have been employed by almost all those who tried to exhibit the
uniform circular motion by means of the so-called ‘Aeon-tables’,'? but their
attempts were faulty and at the same time lacked proofs: some of them did not
achieve their object at all, the others only to a limited extent); but, [we may
presume], he reckoned that one who has reached such a pitch of accuracy and
love of truth throughout the mathematical sciences will not be content tostop at
the above point, like the others who did not care [about the imperfections];
rather, that anyone who was to convince himself and his future audience must
demonstrate the size and the period of each of the two anomalies by means of
well-attested phenomena which everyone agrees on, must then combine both
anomalies, and discover the position and order of the circles by which they are
brought about, and the type of their motion; and finally must make practically
all the phenomena fit the particular character of the arrangement of circles in
his hypothesis. And this, I suspect, appeared difficult even to him.

The point of the above remarks was not to boast [of our own achievement].
Rather, if we are at any point compelled by the nature of our subject to use a
procedure not in strict accordance with theory (for instance, when we carry out
proofs using without further qualilication the circles'? described in the
planetary spheres by the movement [of the body, i.e.] assuming that these
circles lie in the plane of the ecliptic.'* to simplify the course of the proof); or [if
we are compelled] to make some basic assumptions which we arrived at not
from some readily apparent principle, but from a long period of trial and
application," or to assume a type of motion or inclination of the circles which is
not the same and unchanged for all planets;'® we may [be allowed to] accede
[to this compulsion], since we know that this kind of inexact procedure will not
affect the end desired. provided that it is not going to result in any noticeable
error; and we know too that assumptions made without proof, provided only
that they are found to be in agreement with the phenomena, could not have
been found without some careful methodological procedure, even if it is ditficult

2814 tTig xaAovpivng aiwviov kavovoroliag. In my opinion, Ptolemy is referring toa type of
work in which the mean motions of the planets were represented by integer numbers of revolutions
in some huge period. in which they all return to the beginning of the zodiac, and the planetary
equations were calculated by a combination of epicycles or of eccentre and epicycle which was noc
reducible to a geometrically consistent kinematic model. i.e. to a class of Greek works which were
the ancestors of the Indian siddhantas. In this 1 am in agreement with van der Waerden, ‘Ewige
Taleln’, except that I believe that the alév implied by the title of these tables does not mean
‘eternity’ (cf. the conventional translation, ‘Eternal Tables’, which is philologically possible, but
not necessary), but refers to the immense common period in which the planets return (cf. the Greek
inscription of Keskinto, HAMA 698-705, and the Indian Mahayuga). The other two references to
these tables in antiquity (P. Lond. 130, see Neugebauer-van Hoesen, Greek Horoscopes p. 21,112-13,
and Vettius Valens VI I, ed. Kroll 243,8) are consistent with, but do not require, this
interpretation. ’

'3 Literally ‘as if the circles were bare [circles]’.

' Ptolemy in fact carries out all the proofs involving the longitudinal motions of the planets (in
Bks. IX=XII) as if the motions lay in the plane of the ecliptic.

!5 The paradigm case of this is the introduction of the equant.

!E.g. the special model for the longitudinal motions of Mercury, or the special inclinations
attributed to the inner planets for their latitudinal motions.
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to explain how one came to conceive them (for, in general, the cause of first
principles is, by nature, either non-existent or hard to describe); we know,
finally, that some variety in the type of hypotheses associated with the circles{of
the planets] cannot plausibly be considered strange or contrary to reason
(especially since the phenomena exhibited by the actual planets are not alike
[for all]); for, when uniform circular motion is preserved for all without
exception, the individual phenomena are demonstrated in accordance with a
principle which is more basic and more generally applicable than that of
similarity of the hypotheses [for all planets].

The observations which we use for the various demonstrations are those
which are most likely to be reliable, namely [1} those in which there is observed
actual contact or very close approach to a star or the moon, and especially [2]
those made by means of the astrolabe instruments. [ In these] the observer's line
of vision is directed. as it were, by means of the sighting-holes on opposite sides
of the rings, thus observing equal distances as equal arcs in all directions. and
can accurately determine the position of the planct in question in latitude and
longitude with respect to the ecliptic. by moving the ecliptic ring on the
astrolabe, and the diametrically opposite sighting-holes on the rings'’ through
the poles of the ecliptic, into alignment with the object observed.

3. {On the periodic returns of the five planets}'®

’

Now that we have completed the above discussion. we will first set out. for each
of the 5 planets, the smallest period in which it makes an approximate return in
both anomalies. as computed by Hipparchus."” These [periods] have been
corrected by us. on the basis of the comparison of their positions which became
possible after we had demonstrated their anomalies, as we shall explain at that
point.*® However, we anticipate and put them here. so as to have the individual
mean motions in longitude and anomaly set out in a convenient form for the
calculations of the anomalies. But it would in fact make no noticeable difference
in those calculations® even if one used more roughly computed mean positions.

'71t is not clear why the plural (‘rings’) is used (contrast the singular at V 1, H354,13). Although
the sights are attached only to ring | in Fig. F (p. 218). Prolemy is presumably referring to both
ring [ and ring 2, since ring 2 has first to be moved to the correct sighting position on the ecliptic
ring (no. 3).

‘%See HAMA 150-2, Pedersen (270) has fallen into some confusion about Prolemy’s procedure:
see Toomer{3] 144-5.

"If Ptolemy means. as we may presume, that the periods ‘computed by Hipparchus’ are the
relationships in integers, "57 returns in anomaly correspond to 59 years and 2 revolutions in
longitude'. etc., then he seems ignorant of the fact that these are well-known (to us) Babylonian
period relationships (for details see HAM.A 151).

2 This is a reference to the chapters on the ‘corrections of the mean motions’, IX 10, X 4, X9, XI
3 and XI7. The ‘comparison’ refers to the use in these chapters of tico positions, separated by a long
time-interval, to derive the mean motions. On the problem of the actual derivation of the
corrections given here, and of the mean motions, see Appendix C.

! Ptolemy means that where he uses the mean motions in determining the eccentricity (e.g. X Z

p- 484) over the short periods involved (a few years) one could use quite crude parameters (e.g. the
mean motions given by the uncorrected Babylonian periods) without seriously affecting the final
result. He is right (see p. 484 n.33). The corrected mean motions are given here merely for
convenience. Cf. the procedure for the lunar mean motion table, p. 179.
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