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Preface

A new English translation of the Almagest needs no apology. As one of the most 
influential scientific works in history, and a masterpiece of technical exposition 
in its own right, it deserves a much wider audience than can be found amongst 
those able to read it in the original. The existing English translation by R. 
Catesby T aliaferro,' besides being difficult to acquire, is such that silence is the 
kindest com m ent one can make. The French translation by N. Halm a, virtually 
unobtainable, suffers from excessive literalness, particularly where the text is 
difficult. T he other m odem  version, K arl M anitius’ G erm an translation, is on 
an entirely different level from these. It was done by a m an who had studied the 
text and m ade a strenuous and on the whole successful effort to understand 
Ptolem y’s m eaning and methods. I have used it constantly for twenty years, and 
those to whom it is familiar will recognise how much I owe to it. Nevertheless, it 
is not free from mistakes, and, to my taste, errs in the direction of paraphrasing 
where it should be translating. Most important, one can no lohger assume that 
those with a serious interest in histor\' are able to read G erm an with ease. I have 
been able to improve on M anitius’ translation, in part because of work 
published since he made it, in part because I had independent access to much of 
the textual evidence, notably the mediaeval Arabic translations. I have drawn 
attention to a few passages where I have noticed that he is in error, but I have 
made no systematic comparison between my translation and his or any other 
version.

Every translator, and especially one dealing with an  ancient language, is 
confronted with the dilemma of being faithful to the original and at the 
same tim e comprehensible to his readers. My intention was that this trans­
lation should serve both those who know no Greek, as a  substitute for the 
text, and those who do, as an aid to reading it. This has inevitably led to 
compromises. O n  the whole, I have kept closely to the m eaning and structure of 
the Greek, even, on occasion, where this entailed abandoning idiomatic 
English. But I have usually broken up Ptolemy’s enormously long sentences 
(characteristic of Hellenistic scientific prose) into shorter units more suitable for 
English, and I have frequently substituted m athem atical symbols (=, + etc.) and 
a symmetric presentation for the continuous rhetorical exposition of the ancient 
text. I have been liberal w ith explanatory additions, which are marked as such 
by enclosure within square brackets. W herever the need to be intelligible forced 
me to a paraphrase, I give the literal translation in a footnote.

It would have m ade what is an  already big book impossibly unwieldy if I had

' For full references here and elsewhere see the Bibliography.



viii Preface

provided a full technical and historical com m entary on the Almagest. 
Fortunately two recent works, by Neugebauer {HAM A) and Pedersen, are 
excellent guides to the technical content, and the former is also of considerable 
help on the numerous historical problems which arise from it. I have therefore 
confined my own com mentary to footnotes on p>oints of detail (referring to the 
above works for expository treatm ents), and to an introduction giving the 
minimum of information necessary to understand and use the translation.

In the course of making the translation I recom puted all the num erical results 
in the text, and all the tables (the latter mostly by means of com puter 
programs). The main purpose of this was to detect scribal errors (in which I 
have been moderately successful). But my calculations incidentally revealed a 
num ber of com puting errors or distortions com m itted by Ptolemy himself. 
W here these are explicable as the result of rounding in the course of 
com putation they are ignored, since to list some thousands of slightly more 
accurate results which I have found with m odern mechanical aids would invite 
Ptolemy’s own sardonic remark: 'Scrupulous accuracy about such a small 
am ount is a sign of vain conceit rather than love of tru th ’. However, 1 have 
noted every com puting error of a significant am ount, and also those cases where 
the rounding errors are not random, but seem directed towards obtaining some 
“neat' result. I hope that this will shed some light on the problem  of Ptolemy's 
m anipulation oi’his m aterial (both com putational and observational) in order 
to present an appearance of rigor in his theoretical treatm ent which he could 
never have found in his actual experience. The problem is an interesting one, 
which deseives an informed and critical discussion. Unfortunately, the recent 
book on this subject by R. R. Newton provides nothing of the kind, hut rather 
tends to Ijring the whole topic into disrepute. The only detailed discussion 
which is useful is that by Britton [1].’ This, however, is confmed to certain 
classes of the observations. My own inferences from the com putations tend to 
confirm Britton's conclusions about the nature and purpose of Ptolem y’s 
manipulations of his data.

This book owes much to the help of numerous people and institutions, which 
I gratefully acknowledge here. The Bibliotheque Nationale, Paris, the 
Biblioteca Apostolica V^aticana and the Biblioteca de El Escorial provided me 
with microfilms of various Greek and Arabic m anuscripts of the Almagest 
(detailed on pp. 3-4). I thank my colleague, David Pingree, P rof Dr. Fuat 
Sezgin and P ro f Dr. Paul Kunitzsch for providing me with other microfilms 
and photocopies which I needed. Mr. Colin Haycraft not only gave me the 
necessary encouragem ent actually to em bark on a project which I had been 
contem plating for a long time, but also bore patiently with the repeated delays 
until the book was ready for publication. W hen B. R. Goldstein, who was 
already engaged in preparing an English version of the Almagest, heard that I 
had decided to make this translation, he generously abandoned the project and 
turned over his materials to me. I owe to these and to him several ideas about 
format and notation. M y pupil, Don Edwards, detected a num ber of slips and

- It i.s ret^cttablf that this has never been formally published. It is available in Xerox copy from 
University Microlilms International, Ann Arbor, Michigan 48106.
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typing errors in my preliminary version, and performed m any useful services in 
com paring the translation with the Greek text. Michele Wilson drew Fig. F for 
me. Ja n e t Sachs provided invaluable help in preparing the typescript for 
publication and eliminating numerous mistakes. Several of my footnotes on 
difficult problems have been influenced by my discussions w ith Noel Swerdlow. 
R ather than trying to disentangle his contribution at each place, I here record, 
with thanks, the stimulus he has given to my thinking. N. G. Wilson answered 
my questions on points of Greek palaeography and went out of his way to 
examine manuscripts at my request. M y colleague, A. J . Sachs, gave me the 
benefit of his unrivalled expertise on several points of Babylonian astronomy 
and M esopotam ian historv'. To my colleague O. Neugebauer Lowe more than I 
can express here. Let me say only that it was he who first introduced me to the 
Almagest more than twenty years ago, that his own investigations of it (only 
part of which have been published in his m onum ental A History o f Ancient 
Mathematical Astronomy) have been invaluable to me as an aid and as a model, 
and that many will recognize his draughtsm anship in several of the supple­
m entary diagrams. As an inadequate token I dedicate this book to him.

Providence, 1982 G.J.T.





Introduction

1. Ptolemy

For a detailed discussion of what little is known of the life of the author of the 
Almagest, and an account of his numerous other works, on astronomy, 
astrology, geography, optics and other m athem atical subjects, I refer the reader 
to my article in the Dictionary of Scientific Biography (Toom er [5]). Here I 
m ention only tha t his nam e was Claudius Ptolemaeus (KXaOSioq rixoXejiatoq), 
that he lived from approxim ately A.D. 100 to approxim ately A.D. 175, and that 
he worked in Alexandria, the principal city of G reco-Rom an Egy'pt, which 
possessed, am ong other advantages, w hat was probably still the best library' in 
the ancient world.

2. The Almagest

T he Almagest is firmly dated to the reign of the Rom an em peror Antoninus 
(A.D. 138-161). T he latest obseivation used in it is from 141 February’2 (IX 7 p. 
450), and Ptolemy takes the beginning of the reign of Antoninus as the epoch of 
his star catalogue (VH 4 p. 340). Although it is clear that Ptolemy had spent 
much time on it and that it is a work of his m aturity  (his own observations 
recorded in it range from .A.D. 127 to 141), it has always been considered as his 
earliest extant work, because of the changes from it and references back to it in 
other works by him (for details see Toom er [5] p. 187). However, a recent 
discovery by Norm an T. Ham ilton (see IV n.51 p. 205) has shown that the 
‘Canobic Inscription’ represents a stage in the development of Ptolemy’s 
astronomical theory earlier than the Almagest. Since Ptolemy erected that 
dedication in the tenth year of Antoninus (A.D. 146/7), the Almagest can hardly 
have been published earlier than the year 150.

As is implied by its Greek name, |ia0TinaTiKTi ‘m athem atical
systematic treatise’, the Almagest is a complete exposition of mathem atical 
astronomy as the Greeks understood the term. W hether there were any 
com parable works (i.e. comprehensive astronomical treatises) before it is not 
known. In any case, its success contributed to the loss of most of the work of 
Ptolem y’s scientific predecessors, notably H ipparchus, by the end of antiquity, , 
because, being obsolete, they ceased to be copied. W hereas H ipparchus’ works 
are still used by Ptolemy’s younger contemporaries, G alen and  Vettius Valens, ‘

' E.g. Galen, On Seven-month Children, ed. W alzer 347, 350; Commentary on Hippocrates’ .-lirj 
Waters and Places (see GAS VI 98). Vettius Valens, Anthologiac 354.



by the early fourth century (and probably much earlier),^ when Pappus wrote 
his com mentary on it, the Almagest had become the standard textbook on 
astronomy which it was to rem ain for more than a thousand years. Thus its 
im portance for us lies not only in its value as a historical source for earlier 
theories and observations, but also, and perhaps chiefly, in its influence on all 
later astronomy in antiquity and the middle ages (in both Islamic and Christian 
areas) down to the sixteenth century. It was dom inant to an extent and for a 
length of time which is unsurpassed by any scientific work except Euclid’s 
Elements.

No attem pt can be m ade here to sketch even an outline of the history of its 
influence.^ I mention only some points to which I will make reference in the 
notes to the translation. The position of the Almagest as the standard  textbook 
in astronomy for ‘advanced students’ in the schools at A lexandria (and no 
doubt at Athens and Antioch too) in late antiquity is am ply dem onstrated by 
the partially extant com mentaries on it by Pappus [c. 320) and by Theon of 
Alexandria {c. 370). In the late eighth and ninth centuries, with the growth of 
interest in Greek science in the Islamic world, the Almagest was translated, first 
into Syriac, then, several times, into Arabic. In the middle of the twelfth 
century no less than five such versions were still available to the am ateur ibn as- 
Salah: a Syriac translation, two versions m ade under the Caliph a l-M a’mHn 
(an older one by al-Hasan ibn Qiiraysh, and one dated 827/8 by al-Hajjaj), a 
version by the famous translator Ishaq ibn H unayn {c. 879-90), and a revision ol' 
the latter by Thabit ibn Q urra  (d. 901).^ Two of these translations are still 
extant, those of al-Hajjaj and Ishaq-Thabit. In them we find the title of 
Ptolemy’s treatise given as ‘al-mjsty’ (consonantal skeleton only). This is 
undoubtedly derived (ultimately) from a Greek form |i8y'iaTr| (?sc. auvxa^K;), 
meaning ‘greatest [treatise]’, but it is only later that it was incorrectly vocalised 
as al-majasn, vyhence are derived the mediaeval Latin ‘almagesti’, ‘alma- 
gestum’, the ancestors of the modern title ‘Almagest’. T he available evidence 
has been assembled and discussed by Kunitzsch, Der Almagest 115-25, where he 
makes a good case for supp>osing that the Arabic form was derived, not directly 
from the Greek, but from a middle Persian (Pahlavi) translation of the 
Almagest. There is independent evidence for the existence of the latter, but 
whether it was made as early as the reign of the Sassanid k in g S h ah p u h rl (241- 
272), as later Persian accounts m aintain, seems very dubious to me.

While Ptolem y’s work in the original Greek continued to be copied and 
studied in the eastern (Byzantine) empire, all knowledge of it was lost to western

 ̂The evidence for the practice of astronomy in the third century is pitifully small, but there exists 
a fraenment of a text from about A. D. 213 which isciosely related  to the Almagest (see HAMA  I I 948- 
49), and there are several third-century papyri related to the Handy Tables {ibid. 974-75,979-80). 
P. Ryl. 27 (written c. 260) quotes Ptolemy’s solstice and equinox observations from Almagest III 1, 
and in the late third century Porphyry {Comm, on Harmonica 2, p. 24,15 IT.) quotes Almagest 12 (H9, 
11-16). The only evidence I have seen for knowledge of the Almagest in the second century, Galen, 
CommenUry on Hippocrates’ Airs Waters and Places III (ms. Cairo, f a r a t  tibb 550, p. 73a), where 
Ptolemy is mentioned at the end of a  list o f authorities on astronomy, must be an interpolation in the 
Arabic tradition, since Ptolemy is there characterized as ‘the king of Egypt’.

^I know of no satisfactory account of this. I gave a very brief sketch, Toomer(5] 202.
^For a full account of this see Kunitzsch, Der Almagest, especially 15-71. Kunitzsch has also 

published the work of ibn as-^alah (see Bibliography).

2 Introduction: History o f  the Almagest



Europe by the early middle ages. Although translations from the Greek text 
into Latin were m ade in mediaeval times,^ the principal channel for the 
recovery of the Almagest in the west was the translation from the Arabic by 
G erard of Cremona, m ade at Toledo and completed in 1175.® M anuscripts of 
the Greek text began to reach the west in the fifteenth century, but it was 
G erard’s text which underlay (often a t several removes) books on astronomy as 
late as the Peurbach-Regiom ontanus epitome of the Almagest (see Biblio­
graphy under Regiomontanus). It was also the version in which the Almagest 
was first printed (Venice, 1515). The sixteenth century saw the wide 
dissemination of the Greek text (printed at Basel by Hervagius, 1538), and also 
the obsolescence of Ptolem y’s astronomical system, brought about not so much 
by the work of Copernicus (whichin form and concepts is still dominated by the 
Almagest), as by that of Brahe and Kepler.

Introduction: The translation 3

3. The translation

T he basis of my translation is the Greek text established b\- Heiberg. I have, 
however, found it necessary to make several hundred corrections to that text. 
These are noted at the places in the translation where they occur,' an d  are also 
listed in Appendix B. In many cases (usually Involving numerical com puta­
tions), my correction consists of adopting the reading of tĥ e manuscript D. 
unjustly spurned by Heiberg as descended from an archetype due to an 
Alexandrian recension in late antiquity (Prolegomena, in Ptolemy, Opera 
Minora C X X \’I-V II). W hatever the truth about that, and despite the fact that 
D itself is, as Heiberg says, ‘most negligently w ritten ', I am convinced on 
grounds of internal consistency that it represents a sounder tradition than that 
of the mss. ABC, generally preferred by Heiberg. In many cases its obviously 
correct readings are shared by all or part ol the Arabic tradition. Nevertheless, I 
have not deviated from H eiberg’s text except where it seemed essential for sense 
or num erical consistency. In making corrections I have referred to photographs 
of the following manuscripts.

Greek (I use Heiberg’s notation)
A Parisinus graecus 2389. M ainly uncial, ninth century 
B Vaticanus graecus 1594. Minuscule, ninth century 
D Vaticanus graecus 180. Several hands, but not, as Heiberg, Almagest 1 p. V, 

of the twelfth century, but rather of the tenth: see the V atican Catalogue 
by M ercati and Franchi de’ Cavalieri, I p. 206. N. G. Wilson has 
confirmed this dating  for me by personal inspection. (Heiberg himself 
seems to have changed his opinion later: see Prolegomena LX X IX .)

Arabic (I have used the abbreviations ‘Ar’ to refer to the consensus of the

* Sec Haskins, Studies 103-112, 157-165.
*Kunitzsch, Der Almagest 83-112, gives a valuable account of the evidence for this, and of 

G erard’s method of work; evidently he used more than one of the Arabic translations.
’ I have acknowledged there all cases known to me where my correction has been anticipated by 

others, notably Manitius.



Arabic tradition, and ‘Is’ to the consensus of the mss. containing the Ishaq- 
T habit version).
L Leiden, or. 680. Eleventh century according to Kunitzsch, Der Almagest 38.

This is the only surviving m anuscript of the version of al-Hajjaj.
T  Tunis, BibliothequeNationale, 07116 (seeKunitzsch,Z)#r.'l/ma^«/ 38-40).

Completed O ctober 1085. T he Ishaq-Thabit version, complete.
P Paris, B.N. ar. 2482. Completed December 1221. See Kunitzsch, Der 

Almagest 42-3. The Ishaq-Thabit version. Books I-V I 13.
Q  Paris, B.N. ar. 2483. Fifteenth century. See Kunitzsch, Der Almagest 43.

The Ishaq-Thabit version. Books I-V II.
E Escorial 914. See Kunitzsch, Der Almagest 43-4. T he Ishaq-Thabit version, 

Books V -IX .
F Escorial 915. Com pleted Septem ber 1276. See Kunitzsch, Der Almagest 

44-5. The Ishaq-Thabit version, allegedly containing Books V II-X III. 
but in fact lacking large sections even of these, and bound in such disorder 
as to be almost useless.

Ger The Latin translation of G erard of Crem ona, for which I have used only 
the printed edition (Venice, Liechtenstein, 1515). For the complex 
dependence of this on the various Arabic versions see Kunitzsch, Der 
Almagest 97-104.

I did not undertake a complete collation of any of the above mss. For the 
Greek mss. that would have been largely useless, since Heiberg’s reports are, as 
in all his editions, very accurate (to judge from my sporadic verifications; I 
remarked the rare exceptions in the notes to the translation). To collate the 
Arabic translation would have delayed this book for several years, w ith no 
commensurate gain. I have consulted the above mss. only in passages where I 
already considered Heiberg’s text wrong or suspect. Therefore no conclusions 
should be drawn about the readings of the Arabic mss. where I do not explicitly 
report them.

There are a num ber of places where, if I were to establish a Greek text, it 
would differ from Heiberg’s, but which I have not bothered to record in this 
book. Examples are:

mere orthography:
rjupioKo^sv for eup'iaKO)iev (imperfect) I 327,15
KdXXiTtTtoc; for KdXtitTtoc; I 199,5
d^eTd7t6lOTOV for d îeTdTtiCTTOv I 6,18 (cf. Boll, Studien 74)
KpiKog for KpiKo<; I 196,8

changes in form not affecting the sense: dv for edv I 393,11 
reversals of letters referring to figures: ZK for KZ I 243, 22 
obvious misprints:

CTE>.Tivr|(; for 1 406,25
dv(i)^aA.iaq for d^a}^a>.taq 1 462,19

(less obvious misprints, particularly those involving numbers, are recorded).

During the course of making the translation, I became convinced tha t the

4 Introduction: Manuscripts and text



text contains quite a large num ber of interpolations, which must go back to 
antiquity, since they are in the whole manuscript tradition, both Greek and 
Arabic. I was first led to this conclusion by the discovery th a t there are places in 
the text, nonsensical as they stand, which can be m ade to yield perfect sense by 
the simple elimination of a clause or sentence, which must have been inserted as 
‘explanation’ by someone who failed to understand Ptolem y’s meaning- A 
notable example is V 1 (see p. 219 n.5). Cf also V 12, p. 245 with n.41.1 later 
realised that there are whole classes of textual m atter which must also be 
regarded as interpolations. O ne of these is the totals in the star catalogue (see pp. 
16-17). The other is the chapter headings. Some of these (e.g. IX  2) are so inept as 
descriptions of the actual content of the chapter that it is impossible to attribute 
them to Ptolemy. In fact I do not believe that Ptolemy himself used any chapter 
divisions at all. It is obvious that he is resp>onsible for the division into 13 books, 
both from the summaries that are found a t the beginning of most books, and 
from explicit references such as ‘in Book I’ (^v rw jrptoTfp auvrd^Ewq, I I 1 p. 
75) and ‘in the preceding book’ (sv xw Tipo TOUTtov auvTaynaTi, V I 5 p. 283). 
But he never refers to a chapter division. Furtherm ore, there is some 
discrepancy in the m anuscript tradition (especially between the branch 
represented by D and that represented by A) as to the points o f division between 
chapters (e.g. at the beginning of Book III), and it is clear from Pappus’ 
com m entary that although a division into chapters already existed in his time, 
it was very different, at least in Book V, from the present division. ® If the chapter 
division and headings are spurious, so too must be the table of contents 
preceding each book. Nevertheless, since this method of subdividing the text is 
useful for reference purposes, and appears in all editions, I have retained it, 
merely m arking the character of the chapter headings by enclosing them in 
brackets thus; { }.

Introduction: Interpolations 5

4. What is in the Almagest, and what is not

The order of treatm ent of topics in the Almagest (outlined in 1 2) is completely 
logical. In Book I, after a brief treatm ent of the nature of the universe (in w  far 
as it concerns the astronomer), Ptolemy develops the trigonom etrical theory 
necessary for the work as a whole. In Book II he discusses those aspects of 
spherical astronomy which are related to the observer’s position on earth (rising*- 
times, length of daylight, etc.). Book III is devoted to the theory of the sun. This 
is a necessary preliminar>' for the treatm ent of the moon in Book IV, since the 
use of lunar eclipses there depends on one’s ability to calcidate the solar 
position. Book V treats the advanced lunar theory, which is a  refinement of that 
in Book IV, and also lunar and solar parallax. Book V I is on eclipses, and thus 
requires a knowledge of both solar and lunar theory, and also of parallax. Books 
V II and V III treat the fixed stars: since the moon is used as a ‘m arker’ to 
determ ine the position of some crucial fijced stars, lunar theory must precede 
this, and since some planetary observations are m ade with respect to fixed stars,

*See the note in Rome{l] I p. 106, and cf. (for Theon) II p. 448 n. (1).



the establishment of a star catalogue (VII 5 and V III 1) must precede the 
planetary theory. The last five books are devoted to the planets. Books IX -X I 
develop the theory of their longitudinal motion, Book X II treats retrograda- 
tions and greatest elongations (which depend only on longitude), vk̂ hile Book 
X III deals with planetary latitude and those phenom ena (the ‘phases’) which 
are partially def)endent on it. Ptolemy occasionally anticipates later results for 
the sake of convenience (see IV 3 p. 179 and IX  3 p. 423, where the m ean motion 
tables of moon and planets incorporate some later corrections), but in general 
the order of presentation, within books as well as in the treatise as a whole, is 
dictated by the logic of the didactic method.

There are, however, certain topics which Ptolemy does not discuss either 
because he takes it for granted that they are already known to his readers, or 
because it seemed superfluous to go into details (here I am  referring especially to 
chronological matters). He says specifically (I 1 p. 37 with n .l3 ) that the work 
is for ‘those who have already m ade some progress in the field’. This means, in 
practice, that he assumes a knowledge of elem entary geometry (‘Euclid’) and 
’logistic’ (thus he does not consider it necessary to explain how to extract a 
square root), and also o f ‘spherics'. The latter is illustrated by the extant works 
of Autolycus, Euclid (Phaertornena) and Theodosius {Sphaerica), which deal with 
the phenom ena arising from the rotation of stars and sun about a central, 
spherical earth, e.g. their risings, settings, first and last visibilities, periods of 
invisibility etc., using elem ental^ geometry, but arriving mainly at qualitative 
rather than quantitative results.*^ These results are mostly irrelevant to 
Ptolemy's work, but he does use much of the terminology and concepts of 
spherics without e.xplanation.

6 Introduction: Contents o f  the Almagest

5. What the reader o f the Almagest needs to know

The modern reader, too, is likely to be familiar with elem entary geometry. S o l 
have not burdened the translation with references to Euclid except where the 
theorems assumed are not immediately obvious. However, in what follows I 
give a brief explanation of methods, concepts and facts not explained by 
Ptolemy which the reader of the Almagest needs to know, but which may be less 
familiar. O n Ptolemy’s m athem atical methods in general one may profitably 
consult Pedersen 47-56.

(a) The sexagesimal system

This was taken over by the Greeks (one may guess by the Hellenistic 
astronomers) from the Babylonians as a convenient way of expressing fractions 
and (to a lesser extent) large numbers, and of perform ing calculations with 
them. It is the first place-value system in history. In the translation and notes I 
use the convenient m odern ‘com ma and semi-colon’ notation, in which

®For more detail see HAMA  II 755-71.



6,13; 10,0,58 represents 6 X 60+13 + 10 x 60“ ' + 0 x 6 0 ”^+ 58 x 60“ .̂ Ptolemy uses 
the system only for fractions, and represents whole numbers, even when 
com bined with sexagesimal fractions, by the standard Greek (alphabetic) 
notation. T he translation follows this mixed notation (thus the above number 
would be written 373; 10,0,58 in the translation, and  foy  i  o VTi in Greek).

- -... ...

Introduction: Sexagesimal system; fractions 7

(b) Fractions

Except where it is necessary to be precise, Ptolemy prefers the traditional Greek 
fractional system to the sexagesimal. In this, although it is possible to express 
proper fractions as e.g. ‘4 5ths’, preference is given to unit fractions, so that, e.g. 
‘4’ is expressed as the sum of i and i (written Z '5 ', i.e. 4 i ’). There is a special 
sign fo r !. In the translation I have usually converted these sums of unit fractions 
to proper fractions without comment. However, I have always retained the 
fractional form where PtoJemy has it, since it gives a misleading appearance ol’ 
precision to convert to sexagesimals (as M anitius often does, putting an exact 
num ber of minutes instead of a fraction of a degree). This is particularly true of 
the star catalogue.

(c) Trigonometry

T he sole trigonometrical function used by Ptolemy is the chord. The derivation 
and structure of his chord table are fully explained in I 10. However, Ptolemy 
does not give explicit instructions for its use in trigonom etrical calculations, 
although his method is obvious enough from the worked examples. In what 
follows I give a literal translation, with com mentary, of a typical calculation 
involving trigonometry.

See Fig. A, and, for my conventions, compare the translation pp. 163-4. In the 
given situation arc 0 H  is 30®, AD is 60*’, AH is 2;30^, and it is required to find 
the angle ADH (the ‘equation’). In modern trigonom etry we would u«e the 
cosine formula. Ptolemy has no equivalent, so he drops the perpendicular HK, 
thus transform ing the problem into one of solving only right triangles, which is 
his standard  procedure.*®

‘T hen  since arc © H is again 30 degrees, angle 0  AH would be 30 of those [units] 
of which 4 right angles are 360, and 60 of those [units] of which 2 right angles are 
360. So the arc on H K  is 60 of the units of which the circle [circumscribed] 
about the right-angled [triangle] HKA is 360, and the arc on AK is 120, the 
supplem ent m aking up the semi-circle. And so, of the chords subtended by 
them, H K  will be 60 ofthe units of which hypotenuse A H  is 120, and AK 103;55 
of the same [units].’

He knows the equivalent of the sine formula, namely that in the general triangle the sides are 
proportional to the chords ofthe doubles of the opposite angles, but uses it surprisingly infrequently. 
An example is IX  10 p. 462 (cf, n.96 there).
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G
Fig. A

To solve a right-angled triangle (here HK A), Ptolenay iniagines a circle 
circumscribed about it. Then the hypotenuse of the triangle is the diam eter of 
the circle, and is taken (initially) as 120 parts (R = 60 being the standard on 
which Ptolem y’s chord table is constructed). T he two acute angles of the 
triangle being given, the other two sides can now be expressed in the same units: 
they are the chords of the arcs of the circumscribed circle, which are the doubles 
of the angles of the triangle (since they are equal to the angles at the centre). 
Instead of explicitly doubling these angles, Ptolemy always first expresses them 
in ‘units of which 2 right angles are 360’. (Following the convention invented by 
B. R. Goldstein, I indicate these ‘demi degrees’ by the notation reserving ° 
for the standard degree of which there are 90 in a right angle.) This enables him 
to switch smoothly from the triangle to the circle (and hence to the chord table, 
which gives him  the actual numbers dO** and 103;55’’): an angle of size 0° is 
20°°, and hence the arc of the circumscribing circle which corresponds to that 
angle is 20°.

‘Therefore in those [units] of which line AH is 2;30, and the radius AD is 60, H K  
will be 1;15 and AK, likewise, 2; 10, and K D , the rem ainder, 57;50.’

The sides of triangle A K H  are converted to the norm  representing their actual 
size (AH = 2;3(f, hence they are multiplied by 2;30/120). This gives two sides of 
the next right triangle to be solved, D H K :H K  and  (by subtraction of AK from 
the given AD) KD.

‘And since the squares on these added together make the square on D H, the



latter will be, in length, approximately 57;51 of the units of which line K H  was 
[found to be]

Since Ptolemy has no tangent function, he has to use ‘Pythagoras’ theorem’ to 
find the hypotenuse of the right triangle in question. H e uses the word jiTiKSi, ‘in 
length’, to indicate that he is taking the square root (considered as the side of a 
square, hence a line length).

‘And so of those [units] of which hypotenuse D H  is 120, line H K  will be2;34 and 
the arc on it [HK , will be] 2;27 of those [units] of which the circle about D H K  is 
360. So that angle H D K  is 2;27 of those [units] of which 2 right angles are 360, 
and about 1;14 of those of which 4 right angles are 360.’

T he sides of triangle D H K  are now converted to the standard in which the , 
hypotenuse is 120'’, thus enabling Ptolemy to use the chord table to determine 
the size of the arc corresponding to the side opp>osite the angle to be determined, 
H D K. T he latter, being at the circumference of the circumscribed circle, is half 
the arc. Ptolemy again expresses this relationship by saying that it is the same 
num ber o f ‘demi degrees’ as the arc is ‘single degrees’, and then converting the 
‘demi degrees’ to ‘single degrees’ by halving. Note that I frequently translate 
expressions like ‘30 degrees of the kind of which the great circle is 360’ simply as 
‘30°’.
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[d) Chronology and calendars

Ptolem y’s own chronological system is ver\- simple. He uses ihc Egyptianyear and 
the era yabonassar. The Egyptian year is of unvarying length of 365 days, 
consisting of twelve 30-day months and 5 extra (‘epagom enal’) days at the end. 
Ptolemy uses the Greek transliterations of the Egyptian m onth names. For the 
reader’s convenience, I usually add a Rom an num eral indicating the num ber of 
the month. T he order of the months is:

I Thoth VII Pham enoth
II Phaophi V III Pharm outhi

III Athyr IX Pachon
IV Choiak X Payni
V Tybi X I Epiphi

VI M echir X II Mesore.

T he reason for choosing the era Nabonassar is given by Ptolemy at III 7 (p. 
166: the earliest (Babylonian) observations available to him were from the 
reign of K ing Nabonassar. Ptolemy’s epoch, Nabonassar I, Thoth  1 cor­
responds to -7 4 6  February 26 in our reckoning." '

‘' Throughout this book I use the ‘astronomical’ system of dating according to the Christian era, 
since it is far simpler for calculating intervals than the ‘B.&/.A.D.’ system. In this, year -1 
corresponds to 2 B.G, year 0 to 1 B.a, year 1 to A.Di 1, etc.



Even when he refers to other calendars, Ptolemy usually gives the equivalent 
date in his own system, so there is no uncertainty. Sometimes, however, he 
gives, not the running date in the era Nabonassar, but only the regnal year of a 
king. It is clear tha t there already existed, in some form, a ‘king-list’ enabling 
one to relate the regnal year of a given king to a standard epoch. Later, in his 
‘H andy Tables’, Ptolemy published such a king-list (known as ‘Canon 
Basileon’), and  it survives, in a considerably augm ented form, in Byzantine 
versions of Theon of Alexandria’s revision of the H andy Tables. From  these I 
have excerpted and ‘reconstructed’ the table on p. 11, which makes no 
historical pretensions, but is intended solely as an aid to readers of this 
book. The basis of the table is Usener’s edition of the two versions in the 
m anuscript Leidensis gr. 78, in Monumenta Germaniae Historica, Auctores Antiquis- 
simi X III {Chronica Minora Saec. IV. V. VI. VII, ed. Th. Mommsen), Vol. I ll ,  447- 
53, supplem ented by my own reading of the version in the ms. V aticanus gr. 
1291, 16'-17'. T he names of the Babylonian and Assyrian kings are obviously 
very corrupt, and I have made no attem pt to emend them, but have chosen 
those m anuscript variants which seem closest to the forms now known from the 
cuneiform sources, which are listed in the second column (supplied to me by A. 
Sachs).

Foi' the purposes of astronomical chronology, an integer num ber of years is 
assigned to each reign. As far as can be checked from independent sources, 
‘Year 1’ of each reign was assumed to begin on the T hoth 1 preceding the 
historical date on which the king began to reign.*'’ Thus, to use the table to go 
from a given regnal \ ear to the era Nalx)nassar, one simply adds the num ber of 
the regnal year to the total listed (in the fourth column) for the previous king.‘*’ 
E.g. to lind the second year of M ardokem pad in the era N abonassar (cf IV 8 p. 
204), we add 2 to the total of 26 given for his predecessor, Ilulai, and get the 
twenty-eighth year in the era Nabonassar.

Although I supply in the translation the modern equivalent of all dates in the 
Almagest, I have added, for the use of those readers who wish to check them, a 
fifth column listing the Ju lian  equivalent of the first day of each king’s reign. If 
one bears in m ind that every Ju lian  year divisible by 4 is a  leap-year, while the 
Eg\ ptian year is constant, this is a suflicient basis for the calculation. However, 
I recommend as an easier alternative the use o[ ̂ chrdLxn'% Kalendariographische 
Tafeln: from pp. 182-9 of that one can find th e ju lian  day num ber of any date in

'• Papyrus I'raRments of such king-lists are found in P. Oxy. 1.35 and Sattler. Studien 39-50. These 
are, however, later than Ptolemy. P. Oxy, 19.2222, a list of the Ptolemies ol Egypt, is earlier than the 
.■\lmagest, but is very different in format from Ptolemy's king-list.

“ It is not known why these two kings are combined. In cuneiform sources (e g. the king-list 
translated in Pritchard, Ancient ,\ear Eastern Texts 272 (iv), they appear consecutively, UkTn-zer 
being assigned 3 years and Pulu 2.

'^This must be a corniption in theGreek tradition of Arses (’Apor]^), the usual form of this king’s 
name (also known a s ’OapoTic;;.

‘̂ This was recognised long ago. See Usener, MGH  XIII.3 p. 441, with references to older 
literature in his n.5.

In the Handy Tables Ptolemy adopted the ‘era Philip’ (which already occurs in the Almagest as 
death of Alexander’); hence in the mss. the totals for era Nabonassar go only as far as Alexander the 
Macedonian (no. 31), and a new totalling system begins with Philip (no. 32). I have converted all 
these later totals to the era Nabonassar by the addition of 424 to each. Cf. Schram p. 173.

10 Introduction: Chronology
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Ruier

Kin{^ [of Assyria 
and  Babylonia]

1 N abonassar
2 N adi
3 Chinzer and  P o r‘^
4 Ilulai
5 M ardokem pad
6 Arkean
7 Fii-st interregnum
8 Belib
9 A paranad

10 Rfgeljel
11 Mesescmoi'dak
12 Second in ta regnun i 
Ki AsariHin
14 Saosdouchin
15 K iniladan
16 \abopola> sar
17 Nabokolassar
18 Illoaroudani
19 Nerigasola.vsar
20 \a l> onadi

Corret i (brm Yeai-s of Total years to Julian dale of 
reign end ol' reign lieginning ol' reign

Nabii-nasir
X adin
Ukin-zer; Pulu 
Elulai
M arduk-apla-iddin
Sanu-uk in

Bel-ibni
Assur-nadin-sumi
Neri»ai-iisezib
M uM'zib-Marduk

Assiir-a(ia-iddina
Samas-IIiiina-ukin
K.aiKialanii
.N'abu-apla-usur
Nabil-kudurra-u.sur
A mil-M ardiik
Nfr^al->arra-usur
N abu-na’id

14
2
5
5

12
5 
2
3
6 
I
4 
8

13
20

43

14
16
21
26
38
43
45
48
54
55 
59 
67 
80

l(K)
122
143
186
188
192
20'.t

-746 Feb. 26 
-732 F eb  23 
-730 Feb. 22 
-725 F eb  21 
-720 Feb: 20 
-708 Feb. 17 
-703 Feb. 15 
-701 Fei). 15 
-698 Feb. 14 
-692 Feb. 13 
-691 Feb. 12 
-liS7 Feb. 11 
-679 Feb. 9 
-666 Feb. 6 
-(H6 Feb. 1 
-624 Jan. 27 
-603 Jan . 21 
-■>«) Jan. 11 
-5.58 Jan. 10 
-554 Jan. 9

K inip ol the Persian>
21 Cvriis
22 Kambvses
23 D arius I
24 Xerxes
25 .\rta.\erxes I 
2(i D arius II
27 .\rlaxerxes II
28 ()< hus
29 .Arogos'*
30 Darius III
31 .M fxander the .Maredonian

Kurus 
K am buzi\ ai-v - hU arayava u
X>avarsa
•\rtaxsaOra
D ara \ava 'u
.\rtaxsa6ra
\'ah au k a
.^Hawarsa
Darav ava u
A/.ecaviSpo^

9
8

36
21
41
19
4<i

218
226
2(i2
283
324
343
389
410
412
416
424

-537 Jan. 5 
-528 Jan . 3 
-520 Jan . I 
-485 D. <. 23 
-464 l>< . 17 
-423 Der. 7 
-404 Dee. 2 
-358 .Nov . 21 
-337 Nov. 16 
-335 .\ov. 15 
-331 .Nov. 14

Kings o f the .Macedonians
32 Philip who succeeded

.Alexander the (i)under
33 .M exander II
34 Ptolemy son ol' Lagos
35 Ptolemy Philadelphos
36 Ptolemy Euergetes
37 Ptolemy Philopator
38 Ptolemy Epiphanes
39 Ptolemy Philometoi'
40 Ptolemy Euergetes II
41 Ptolemv Soter
42 Ptolemy .Neos Dionysus
43 C leopatra

Kings ol the Romans
44 .Augustus
45 Tiljerius
46 G aius
47 Claudius
48 Nero
49 \ ’espasian
50 Titus
51 D om itian
52 Ner%a
53 T ra jan
54 H adrian
55 Antoninus

(p'tXtrtTOw
'AX^avdpoc ETEpo.; 
riTOA.e|id\oc Adyou 
<DiX.d6£/.ipoc
EiiEpyETTic 
<I>iA.ortdT(op 
Erttipavn̂  

<DtXonnTtop 
EOepyETTi;; P'
IcoTtip
Ai6vuoo<; v£o<; 
KA.£OitdTpa

•Augustus
Tiljerius
Gaius
Claudius
-Nero
X’espasianus
Titus
Domitianus 
Nerva 
Traianus 
H adrianus 
Aelius Antoninus

20
38
25
17
24
35 
29
36 
29

43
22

4
14
14 
10
3

15 
1

19
21
23

431
443
463
.501
526
543
567
602
631
667
696
718

761
783
787
801
815
825
828
843
844 
863 
884 
907

-323 Nov. 12 
-316 .Nov. 10 
-304 .Nov. 7 
-284 Nov. 2 
-246 Oct. 24 
-221 Ocf. 18 
-204 Oct. 13 
-180 Oct. 7 
-145 Sept. 29 
-116 Sept. 21 , 
-80 Sept. 12 
-51 Sept. 5

-29 .Aug. 31 
14 Aug. 20 
36 Aug. 14 
40 Aug. 13 
54 .Aug. 10 
68 Aug. 6 
78 Aug. 4 
81 Aug. 3
96 July 30
97 July 30 

116 July 25 
137 Ju ly  20



the era Nabonassar in a few seconds, and hence (from his other tables) the 
equivalent date in any standard calendar.

The only other zispect of Ptolemy’s own chronology requiring rem ark is the 
‘double dates’. He frequently characterises the day of an observation by 
expressions likeFIaxtov e’k; fnv  iT]', translated ‘Pachon 17/18’, but literally 
Tachon, the seventeenth towards the eighteenth’. M odern com m entators have 
made unnecessarily heavy weather of this. Ptolemy himself uses a noon epoch, 
but this is an artificial starting-point (the reason for which he explains at III 9 pp. 
170-1), and has nothing to do with numbering the day. In antiquity the ‘civil epoch’ 
of the day was either dawn (as in Egypt) or sunset (as in Babylon). In either 
system, an event which took place in the daylight would be on the same ‘day’, 
but one which took place in the night would be on ‘day n’ for those using dawn 
epoch and 'day n+1’ for those using sunset epoch. Hence ambiguity was 
possible. Ptolemy uses double dates (which are found only for night-time 
observations) to avoid this ambiguity. T he form he uses implies the Egyptian,
i.e. dawn epoch (cf. the long form III 1 p. 138,Tfj la ' xov M saopi] jiexd 
kyyvc, tou  eiq Tf)v iP ' |ieaovvjKTiou (literally ‘on the eleventh ol' Mesore, 
approximately two hours after the m idnight towards the twelfth’), but it would 
be clear even to someone using sunset epoch (who would date the above event to 
‘Mesore 12’) what day he means.

In using the obsei-vations of his predecessors Ptolemy often has occasion to 
refer to other systems of chronology' and calendars. A lthough in such cases one 
can always readily derive the equivalent date in Ptolem y’s own system (he 
almost always gives it explicitly), I shall describe them briefly here.

The most frequently mentioned is the Kallippic Cycles. To explain this, we 
must go back to Meton, who in -431 devised a 19-year ‘cycle’, i.e. a fixed 
scheme of intercalation of months containing 6940 days (thus the average 
length of a year was 3651 + days).’’ Since he was an Athenian, he used the 
month names of the A thenian civil calendar for the months of his artificial 
‘calendar’. A hundred years later an associate of Aristotle, Kallippos, produced 
a revision of this, based on the more accurate year-length of365i days. In order 
to achieve this, he eliminated one day from 4 M etonic cycles, thus producing 
the ‘Kallippic cycle’ of 76 years and 27759 days. W hat was later known as the 
'First Kallippic Cycle’ l)egan at the summer solstice (probably June  28th) of the 
year -329. In the Almagest we find references also to the Second and T hird  
Kallippic Cycles, which began in -253  and -177  respectively. T o  judge from 
the Almagest, this chronological system was the one most used by earlier 
Hellenistic astronomers.'® In V II 3 four observations by Tim ocharis (Alexan­
dria, third century B.C.) are given according to the year of the First Kallippic 
Cycle and ‘A thenian’ m onth and day. O n  the basis of these, several attem pts 
have been made to reconstruct the whole ‘K allippic calendar’, with discrepant 
results. Since the above constitute the whole evidential basis, apart from the

•’ For a detailed discussion see Toomer[7]. I give there the arguments for supposing that M eton’s 
purpose was not to rel'orm the Athenian calendar, but to establish an ‘astronomical chronology’.

'“The dates of the three eclipses in IV 11 (p. 211, cf. n.63 there) which, though observed in 
Babylon, are given according to Athenian archon and Athenian month, are presumably in the 
Metonic calendar.
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passage in Geminus, Eisagoge V III, which I regard as fiction, and two dubious 
equivalences in the Milesian parapegm a, any reconstruction is academic.^® 
Here I note only that Kallippos evidently retained the p>eculiar Athenian method 
of counting the days of the m onth by decads, and  in the last decad counting 
backwards, so that V I I3 p. 336 (p0ivovTO<;, literally ‘on the sixth [day] of 
the w aning [moon]’, means ‘the sixth day from the end of the last decad’, i.e. the 
twenty-fifth.^®

H ipparchus too used the Kallippic cycles for astronom ical dating, but 
com bined them, not with Kallippos’ ‘A thenian’ calendar, but with the 
Egyptian calendar (i.e. he used the cycles simply as a year count), at least as far 
as we can tell from the Almagest. This seems to have led to ambiguities, since 
the ‘K allippic’ year began at or near the summer solstice, while the Egyptian 
year is a ‘w andering.year’, which in H ipparchus’ time began about the end of 
September. Thus there arose the possibility of a discrepancy of 1 in the year 
count, for certain stretches of the year (whether it is +1 or -1  depends on 
H ipparchus’ choice). Such a discrepancy is firmly attested in Almagest IV 11 
(see p. 214 n. 72), and cannot plausibly be removed by em endation, though this 
has been done (by Ideler and others) in the interest of consistency. In fact it is 
impossible to make all of H ipparchus’ ‘Kallippic cycle’ dates in the Almagest 
consistent w ith one another (see p. 224 no. 13), and we must allow for the 
possibility that H ipparchus used different systems in different works.

Three planetary observations in the Almagest are dated  Katd XaX5aiou<;, 
‘according to the Chaldaeans’, with a year num ber and a M acedonian month 
nam e and day number. The year numbers show that the era used is that known 
in m odern times as the Seleucid Era (dating from the year which Seleucus I 
counted as the first of his reign, -311/10), which was common throughout the 
Seleucid empire. Since the observations are undoubtedly Babylonian, the 
particular epoch used in them is, as one would expect, that known from the 
surviving Babylonian astronomical texts, 1 Nisan (April) -310 (Greeks under 
the Seleucid empire commonly used an epoch of au tum n -311). The use of 
M acedonian month names has rightly been taken to show tha t the Babylonian 
lunar months were simply called by the names of the M acedonian months by 
the Greeks under the Seleucid empire: ifone computes the date o f the first day of 
the ‘M acedonian’ month from the equivalent date in the eraN abonassar given 
by Ptolemy, it coincides (with an error of no more than  one day) with the 
com puted day of first visibility of the lunar crescent at Babylon.^* There is other 
evidence for the assimilation of the month names,'■ but this is the strongest.

U nattested outside the Almagest is the Calendar o f Dionysius. This had a

Those who care to may consult Ginzel I I 409-19 and Samuel, Greek and Roman Chronology, 42-9 
for details and literature.

For this system sec Samuel, Greek and Roman Chronology 59-60. I do not know why it is not used 
for the other three ‘Kallippic’ dates in which the days are simply numbered consecutively.

These are conveniently listed in Parker-Dubberstein.
** For details see Samuel, Greek and Rmtan Chronology 140-2. However, Samuel is wrong in saying 

that the Almagest evidence proves that the assimilation was made as early as the date of the earliest 
observation (Nov. -244). In the cuneiform record from which this was derived the Babylonian 
names must have been used. It was only when this was translated into Greek (which may have been 
as much as a century later) that the Macedonian names were substituted.
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running year count and months nam ed after the signs of the zodiac 
(corresponding, a t least approxim ately, to the period of the year when the sun 
was in the sign in question). T he m onths T auron  (8  ), D idym on (H ), Leonton 
( ^ ) ,  Parthenon (115), Skorpion (m ), Aigon (l^ ) and H ydron ( ^ )  are attested. 
From  analysis of the Almagest evidence Bdckh, Sonnenkreise 286-340, showed 
tha t the epoch of the calendar was the summ er solstice o f -284. Since T hoth  1 
(Nov. 2) of -284 is the beginning of the first regnal year of Ptolemy 
Philadelphos, it is plausibly concluded that Dionysius observed in Egypt. 
Bockh’s further conclusions, that the calendar was similar to the Egyptian one 
in having 12 months of 30 days, but was modified by introducing a sixth 
epagomenal day every four years, cannot be regarded as certain, especially 
since this requires 'em ending’ some of the Almagest dates. Here, as for the 
Kallippic calendar, ‘reconstruction’ seems pointless when the evidence is so 
scanty and the likelihood of verification utterly remote.^^

O ne observation is dated in the Bithynian calendar of the imperial period. Like 
a num ber of other contemporary calendars in Asia M inor, this was simply the 
Ju lian  calendar, with different month-names, and with the first day of the year 
Augustus’ birthday, Sept. 23. For details and literature see Samuel, Greek and 
Roman Chronology 174-5.
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{e) Ptolemy's star catalogue

The list of the coordinates and m agnitudes of the principal fixed stai-s visible to 
Ptolemy poses special problems to the translator. In particular, there are 
numerous manuscript variants in the coordinates, and while one must put some 
num ber in the translation, it is often dilficult to be certain about one’s choice. 
T he solution I have adopted is (in the star catalogue only) to append an asterisk 
to any element (longitude, latitude, magnitude, description or identification) 
where there is reason to suppose that it may be incorrect (i.e. not w hat Ptolemy 
wrote or intended),'^ either because there is a plausible ms. variant, or because 
of some gross inconsistency with the astronom ical Tacts. In such cases I give all 
significant variants known to me in a footnote. I have m ade no eflbrt to record 
all variants, since most are obviously wrong. T he reader who wishes to go 
further must still consult Peters-Knobel, on which I have draw n heavily, and 
which is still the best treatm ent of the catalogue as a whole, though badly in 
need of updating and revision in certain respects.'^

Ptolemy lists the stars under 48 constellations, and gives for each star (1) a 
description of its location on the Tigure’ and (sometimes) of its brightness and 
colour; (2) its longitude; (3) its latitude and direction (north or south of the 
ecliptic); and (4) its magnitude. I have followed my predecessors (notably 
M anitius) in adding to these: (a) an  initial column giving a running num ber to

‘‘‘The interested reader may consult HAMA  III 1067 n.22indSAmuc\^ Greek and Roman Chronology 
50, n.6 for further literature.

^^The lark ol an asterisk does not imply that I regard the reading adopted as Ptolemy’s beyond 
any (luestion. i)ut only that I have no good reason to doubt it.

“’ See the strictures of Kunitzsch, Der Almafiest 46.



the star w ithin its constellation (stars listed a t the end of some constellations by 
Ptolemy as ‘outside the constellation’, i.e. not part o f the imaginary figure, are 
num bered continuously with those preceding them); (b) a final column giving 
the m odern identification of the star. For those stars which have them, this is the 
Bayer letter or Flamsteed number. C ertain fainter stars have neither; for these I 
give the num ber in the Yale Bright S tar Catalogue (abbreviated as ‘BSC’). 
From that publication those interested can find the corresponding number in 
the Durchm usterung and the Henry D raper and  Boss G eneral Catalogues. I 
have abandoned all references to the antiquated Piazzi catalogue (still used by 
Peters-Knobel).

I have used Rom an numerals to num ber the constellations, and refer to 
individual stars (throughout the translation) by the com bination of Rom an and 
Arabic numerals (thus ‘catalogue X X X IX  2’ refers to the second star in the 
thirty-ninth constellation (Canis Minor), namely Procyon).

The star descriptions pose numerous individual problems, only a few of 
which are touched on in the footnotes. Ideally one should provide a 
reconstruction of the outline of each constellation as it appears on Ptolemy's 
star-globe. Unfortunately no one has done the necessary work of assembling 
and com paring all the literary and iconogi'aphic evidence from antiquity and 
from the derivative Arabic tradition (notably as-Siiii). This would be an 
interesting and valuable enterprise. Meanwhile, for the reader who needs some 
visual illustration. I can recommend only the old work of Bayer. I'rammetria, 
with the warning that in many cases his positioning of the stai's on the figures, 
and the outlines of the figures themselves, are certainly dill'erent from 
Ptolemy’s.-*’ O n the m atter of the orientation of the figures, I have satisfied 
myself that Ptolemy describes them as if thes were drawn on the inside of a globe, 
as seen by an obsen-er at the centre ol'that globe, and facing towards him. This 
is in agi eement with what H ipparchus says {Comm, in Aral. 14 5): ‘for all the stars 
are described in constellations (i^aTeptoxai) from our point of view, and as if 
they were facing us. except for such of them  as are drawn in profile’ 
(KaTdypaipov, as interpreted by M anitius. whom I follow dubiously). It is in 
this sense that we must interpret ‘left hand', ‘right leg’, etc. This has to be said, 
since on the actual star globes the constellations were necessarily drawn On the 
outside. Hence the orientation of the figures was (at least in some cases) reversed, 
which could lead to confusion.'^ I have rendered the prepositions used by 
Ptolemy in indicating the positions of stars with respect to parts of the figures 
consistently, as follows:

in = 8V 
on = ejri 

over = Urt8p

-'’The work of Thiele, .-Intike Himmebbilder, is ver\- little help, although I have referred to it to 
illustrate some particulars.

■^Cf. the scholion on Aratus, Maass. Comm, in .-iral. p. 384 no. 251: ‘the signs look inward with 
respect to the heavens . . . but they have their backs to the globe, so that their faces may be seen. 
Hence, if he says “ right hand” or “ left hand" and we llnd the opposite on the glolie, we should not 
l)e confounded.’
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above = tnAvca 
under = uno 
below = UTCOKdTO)

just over = Kaxd + genitive 
advance, in advance = 7tp0TiY0U|iev0<; 

rear, to the rear = feTCÔ ievô

O n the m eaning of the last two terms see below p. 20. Note that ‘rear’ is never 
used in a sense other than directional. T o indicate the back parts of an animal 
figure I use ‘hind’.

Both longitudes and latitudes are given, not in degrees and minutes, but in 
degrees and fractions of a degree. I have retained this in the translation (see p. 
7). W ith very few exceptions, the longitudes are not given more accurately 
than to 6°. (This has been taken to imply that the ecliptic ring of Ptolemy’s 
instrument was graduated only every 10'). However, one frequently finds the 
fractions i° and for the latitudes.

The latitudes in Ptolemy’s list are preceded by the direction (Po = PopEioq, 
‘northern’; vo = v6tio<;, ‘southern’). I have rendered these by + and -  
respectively.

The magnitudes range (according to a system which certainly precedes 
Ptolemy, but is only conjecturally attribu ted  to H ipparchus) from 1 to 6. 
Ptolemy indicates intermediate magnitudes by adding (after the number) 
fieiCo)v, ‘greater' or eXdaawv, iess’ (abbreviated in the mss.). I have rendered 
these by >  and <  (before the number) respectively. O ne occasionally finds for 
the magnitude, instead of a number, the rem ark dfaaupot; (rendered ‘f  ’ for 
‘faint’) or vecpsA.. (for VEcpeXoEiSqc;), ‘nebulous’, abbreviated as ‘neb.’

For the identifications, wherever Peters-Knobel and M anitius are in 
agreement, I have usually been content to adopt their opinion. W here they 
dilfer (and even when the\' agree, in some special c a s e s ) , I  have checked the 
possibilities as carefully as I could, using the large-scale Allas o f the Heavens by 
Becva!', and transforming Ptolemy’s coordinates to right ascension and 
declination at the modern epoch, where necessary. However, I have made no 
attem pt to redo the work of Peters and Knobel, namely to compute the 
longitude and latitude of the relevant stars for Ptolem y’s time from modern 
data (in particular using the most up-to-date values for the proper motions). This 
might be worth while, though I doubt w hether the degree of improvement over 
Peters-Knobel would justify the large am ount of com putation. In any case, it is 
unlikely that it would eliminate the doubts that remain about the identification 
of many of the fainter stars.

At the end of each constellation in the mss. are listed the total num ber of stars 
in the constellation, and the sub-totals of each magnitude. These in turn are 
added up at various intermediate points (the northern segment, the zodiac, and 
the southern segment), and the grand totals are given a t the end. I am
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Notably, where Ptolemy describes a star as a ‘nebulous mass’ (ve(peXoei5ii<; ouoTpcxpTi), I have 
preferred to give the globular cluster (abbreviated ‘CGlo’) or galactic cluster (abbreviated ‘CGal’) 
rather than some particular star inside it.



convinced that this was not done by Ptolemy (who makes no mention of it in his 
description of the catalogue, V II 4 pp. 339-40). A nother indication of the 
spuriousness of these passages is that no separate count is m ade in the totals of 
the stars which are greater (> )  or less (<) than a certain magnitude: all are 
lum ped in with the stars of that magnitude. I have translated the passages in 
question, but enclosed them in brackets thus: { }.
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if) Explanations o f special terms

(i) Geometrical

by subtraction (XoiTtoq -T̂ -6v): literally ‘the rem aining [part]’, ‘'rem ainder’ 
(I have on occasion so rendered it).

by addition {oXoq *t| -ov); literally ’the total’.

Crd v: chord of the angle x° (R = 60'’). Greek has no word with the specific 
m eaning 'chord’, but uses the generic eOOeTa, ‘straight line’. ‘Crd x’ renders 
Td<; X (ioipat; bnoxEwovoa  suGsTa, ‘the straight line subtending x degrees’.

In connection with the Menelaus Theorem  (see p. 18), an e.xpression of the 
type 'C rd  arc 2AB’ represents bno Tiiv SiTrXT̂ v Tr)<; AB TTEpKpepeiat;, literally 
'the [linej subtended by the double of arc .\B ’.

siipplemertt, supplementary arc (î  XexKOVoa [X.cijrfi] eiq to  n|iiKi)KXiov TrspKpepeia): 
literally ‘the arc which is the rem ainder to the semi-circle’.

complement (XoiTTii to  TeTaptr|)i6piov): literally, 'the rem ainder to the 
q u ad ran t’.

II literally, ‘is similar to". Used of arcs of different-sized circles. Arc .ABU arcG D  
if each arc is the same fraction of its circle.

III (laoyojvidv eaxt): literally, ‘has [all] its angles equal to’, i.e. is similar to (used 
only of triangles).

=  ftaOTtXeupov eaxi): literally ‘has its sides equal to’, i.e. is congruent to. Used 
only of spherical triangles. Sometimes laoyoiviov KdilaoTtXeupoveoTi, ‘has its 
angles and sides equal to’.

Q .E .D . (oTTEp eSet SsT^ai): literally ‘which is w hat it was required to prove’.

componendo (ctuvG^vti). Expresses the operation of addition of ratios: if 
a ; b = c ; d, then (a + b);b = (c + d);d.

dividendo (SteXovxi, Kara S iaipeoiv) (1) Usually expresses the operation of 
subtraction of ratios: if a : b = c : d. then (a -  b) : b = (c -  d) : d.



(2) Once, a t X II 1 (see p. 558 n.4) 5 i£X6vti expresses division of members of 
ratios. I f  a  : b = c : d, then „ : b = n : d.

Menelaus Configuration and Menelaus Theorem (used only in the footnotes and 
explanatory additions). C f H AM A  26-9. Fig. B represents a M enelaus 
Configuration. m ,n ,r and s are four great circle arcs on the surface of the sphere, 
intersecting each other as shown, and divided by the intersections into the parts 
mi, m2 etc. (thus m = mj + m2 etc.) In I 10 Ptolem y proves the theorems

I Crd 2m Crd 2r Crd 2s,
X
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Crd 2m, C rd 2rj C rd 2s

II Crd 2r, C rd 2m2 C rd 2n 
Crd 2r, "  C rd 2m, C rd 2no '

Since it is known that these were discovered by M enelaus, Neugebauer has 
nam ed them ‘M enelaus Theorem  F and ‘M enelaus Theorem  IF respectively, 
and I follow him, abbreviating to ‘M .T .I.’ and ‘M .T .IF .

(ii) Spherical astronon^

(at) sphaera recta ( in ' 6p0fjq tf](; atpaipac;) and (at) sphaera obliqua {kiz' 
EyKEKXtnevTii; tfiq a(paipa(;). These mediaeval Latin terms are the literal 
translations of the Greek, m eaning ‘on the upright sphere’ and ‘on the inclined 
sphere’ respectively. Probably taken from the use of celestial globes, they refer 
to the phenom ena which occur when the celestial equator is perpendicular to 
the local horizon {sphaera recta) o r inclined to it a t an  acute angle {sphaera 
obliqua). In particular, we use rising-time at sphaera recta or right ascension, and 
rising-time at sphaera obliqua or oblique ascension to designate the arc of the equator 
which crosses the horizon together with a given arc of the ecliptic (e.g. one



zodiacal sign) at sphaera recta (i.e. a t the terrestrial equator), and at sphaera 
obtiqua (i.e. any other terrestrial latitude) respectively.

equator represents Icrniaeptvog (kukXoc;), literally ‘circle of equal day’, so called 
for the reason Ptolemy gives in I 8 (pp. 45-6).

meridian represents ^80^^nPplv6q (kukXoc;), literally ‘midday circle’ (defined 
and explained at I 8 p. 47). M eridian passage of a heavenly body is called 
culmination. The Greek terms for culminate and culm ination, ^eooupaveTv, 
|i£aoupdvTiai<;, mean literally ‘being in the middle of the heaven’, upper ?Lnd lower 
culm ination are expressed by UJtsp yflv anduno y^iv, m eaning ‘above the earth ’ 
and ‘below the earth ’ respectively, and sometimes so translated.

An altitude circle is any circle drawn through the zenith perpendicular to the, 
horizon. Ptolemy has no special term for this in the Almagest, merely saying 
‘the (great) circle drawn through the zenith (through the poles of the horizon)’, 
e.g. II 12, H I 166, 20-1.

colure. This term  is used by Ptolemy only once, at II 6 p. 83. I translate part of 
M anitius’ note on that passage: Two of the circles of declination through the 
poles of the equator are named ‘colure’ (ic6A.oupog): the solsticial colure, which 
goes through the solstices and hence carries the poles of the ecliptic, and the 
equinoctial colure. These two colures divide the sphere into four equal parts 
and divide both ecliptic and equator into four quadrants, so that one quadrant 
corresponds to each season of the year. Ptolemy counts the solsticial colure as 
boundary of the daily revolution [18 pp. 46-7, where however the term ‘colure’ 
is not used], but never explicitly mentions the equinoctial colure. Both colures 
were already defined by Eudoxus (Hipparchus, Comm, in Aral. 117 (T.) The term 
is explained by Achilles, Isagoge 27 (Maass, Comm, in Aral. 60) as follows: ‘They 
are called colures because they appear to have their tails cut off as it were 
(KeKoXouaGai coaTtEp tok; oupd^), since we cannot see the parts of them 
beginning at the antarctic, always invisible parallel’.

It is unfortunate that we have to use the same word latitude to refer both to the 
celestial coordinate (vertical to the ecliptic) and to the unrelated terrestrial 
coordinate. Ptolemy uses, for the former JtXdToq, and  for the latter KXi|ia, 
literally ‘inclination’. W hen necessary I gloss this e.g. as ‘[terrestrial] latitude’. 
KX.l(ia, however, does not refer to the coordinate as such (for which Ptolemy uses 
eYKXl^a, H I 68,9, eykXiok;, H I 101,23 or, once, -nXaxoc,, H I 188,4), but to a 
specific ‘band’ of the earth  where the same phenom ena (e.g. length of longest 
daylight) are found. Hence in early Hellenistic times arose the notion of the 
division of the known world (the g\kouh8VT|) into 7 standard  climala (see 
H AM A  334 IT., II 727 ff. and Honigmann, Diesieben Klimata). This is reflected in 
several places in the Almagest, e.g. in Table I I 13.1 refer to these seven standard’' 
parallels by Rom an numerals, e.g. Clima IV = the parallel through Rhodes, 
longest day 14  ̂ hours. .
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(iii) Referring to the heavenly bodies

As Ptolemy explains in I 8, in his system the whole heavens are conceived as 
rotating from east to west, making one revolution daily. T he direction defined 
bv this motion, and the direction counter to it, are called el(; TCi TiporiYou^eva 
(‘towards the leading [parts]’) and s’k; xd fe7t6^eva (‘towards the following 
[parts]’) respectively. T he corresponding adjectives 7tp0TiY0U|igV0<; and 
fe7t6^EVO(; are also found, particularly in the star catalogue, and Ptolemy 
frequently uses the phrases elc; td  jrporjYouneva (e7tO|ieva) tcSv Cq)5io)v, 
‘towards the leading (following) [parts] o f the zodiacal signs’, to indicate the 
direction of motion in the ecliptic. A m odem  reader may find this confusing: 
since the normal motion of bodies in the ecliptic is from west to east, w hat we 
regard as forward motion, e.g. of a planet, is described as ‘towards the following 
[parts]’ (‘towards the rear' in my translation). No version of these terms in a 
modem language is satisfactory. O ne cannot use ‘west’ and ‘east’ because these 
must be resened for Ptolem y’s 5ua |ja i and dvaxoXai, which are confined to 
situations where a terrestrial observer is implied. It is a distortion to translate 
(with Manitius) ‘in the reverse order of the signs’ and ‘in the order of the signs’, 
since this implies that the terms define ecliptic coordinates, whereas they are in 
the equatorial system, and while it is usually true that a celestial object which 
;rpor|yelTai (‘leads’) another will have a lesser ecliptic longitude, if their 
latitudes dilTer greatly the reverse may be true, especially at verv’ high ecliptic 
latitudes. Precisely this situation occurs in the star catalogue, despite Ptolem y’s 
own statement at \ ’II 4 p. 340 that the terms in the catalogue define ecliptic 
coordinates (see n.93 there). Although I am  aware tha t my choice loo has its 
drawbacks, I have settled on in advance ibr eiq td  ;tpor|YoO)i8va, and towards the 
rear for e’k; xd fe7t6 |i£va. These always imply ‘with respect to the daily motion 
from east to west’, with the paradoxical consequence, as rem arked above, that 
in the ecliptic a body which is ‘in advance’ of another has a lesser longitude. 
However, I have com mitted an inconsistency in translating the derived noun 
rtpoTiyr|oiq as retrogradation. This is used onl\’ for the portion of the courses of the 
five planets in which they reverse their normal direction of motion, and  it would 
be too confusing to render this by ‘motion in advance’.

ecliptic. Ptolemy ne\ er refers to this circle by the term eKXeiTTCiKoq (which he con­
iines strictly to the meaning ‘having to do with eclipses’). His normal term iso 5id 
î£O(0V xwv i^tpSiwv (kuicXoc;), ‘the (circle) through the middle of the zodiacal 

signs’ (e.g. H I 18,23-4); more fully, 6 "kc^oc, KOt 6idn60(ovxSv^(p5i(ovKi3K>ioq, 
‘the inclined circle through the middle of the signs’ (HI 64,4). Occasionally, 
when the context is clear, simply A.6^oq kukXo^, ‘inclined circle’ (HI 8,22). 
However, the latter can be used for other things, notably the moon’s orbit 
(which is ‘inclined’ to the ecliptic). I normally use ‘ecliptic’ throughout.

[zodiacal] sign. The conventional subdivision of the ecliptic into twelve 30° 
stretches named Aries, Taurus, etc. For this Ptolemy uses, not^cpStov (‘animal 
sign’), but 5a)5eKaxTi|iopiov (‘twelfth’), presumably because he wishes to
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distinguish the ecliptic, a notional circle, from the zodiac, a band of actual 
constellations.

star. T he Greek term doTTip really means ‘heavenly body’, and can be used 
indifferently for a star (in the m odern sense), a planet, or even the sun and 
moon. W hen Ptolemy wishes to distinguish w hat we call stars, he says ‘fixed 
stars’. I have normally translated datTip according to the context, as ‘planet’, 
‘star’ or ‘body’. However, in I 3-8, where Ptolemy uses the term to include all 
heavenly bodies, I too have used star in this special sense. W hen nam ing the five 
planets, Ptolemy almost always uses the periphrasis ‘star o f . . ’, thus 6 TOi) 
Kpovou [doTTip], ‘[star] of Kronos’. I always translate simply ‘Saturn’ etc.

latitude {celestial). TtXaroc; (literally ‘bread th’) refers not only to ‘the direction 
orthogonal to the ecliptic’, but to any ‘vertical’ direction, e.g. that normal to the ' 
equator. In such cases I use, not ‘latitude’, but another appropriate term (see I
12 p. 63 with n. 74). In V II 3, however, I have been forced to use‘latitude’ to 
e.xpress the more general m eaning of the Greek (see p. 329 n.55).

Ptolemy uses iKKevxpoq as both adjective and noun. It may be that in the latter 
case one has always to understand £KK8VTpo<; ‘eccentric circle’.
However, to avoid ambiguity, I have (following mediaeval usage) consistently 
denoted the noun by eccentre and the adjective by eccentric. An ‘eccentre’ is simply 
an eccentric circle. Similarly for concentre and concentric.

I have occasionally used the convenient mediaeval term deferent to denote the 
circle on which an epicycle is ‘carried’. Ptolemy has no one-word equivalent, 
but uses phrases like ‘the concentric carrying the epicycle’, ‘the circle carrying 
it’.

anomaly. As noted e.g. by Pedersen (139 with n.9), dvcona>.ia in the Almagest 
has a num ber of different meanings. Despite the am biguity, I have generally 
rendered dvo>^aX.ia and the adjective from which it is derived, dvcofiaXoq, by 
‘anom aly’, ‘anom alistic’, although where necessary I have translated the latter 
literally as ‘non-uniform’. Besides referring to non-uniform motion, ‘anom aly’ 
is also used for the mean (hence uniform) motion of the moon and planets on 
their epicycles (because the motion on the epicycle produces the appearance of 
‘non-uniformity’). For the planets Ptolemy distinguishes between the synodic 
anomaly (f| npoc; to v  fjXiov dvcDjiaXia, ‘the anomaly with respect to the sun’, 
H II 255,8), which produces the phenom ena of retrogradation and varies with 
the planet’s elongation from the sun, and the ecliptic anomaly (^©SiaKTi 
dvtonaXia, H II 258,11), which varies according to the p lanet’s position in the 
ecliptic.

equation. I use this convenient mediaeval term for the angle (or arc) to be applied 
to a m ean motion to ‘correct’ it to account for a particular feature of the 
geometric model. Ptolemy uses the vaguer terms x6 5id(popov ‘difference’ (which 
is also used for many other things) and TipooGaipaipeOK; (‘am ount to be added
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or subtracted’), equation o f anomaly reliers to the correction for the varying 
position of a body on its epicycle, and equation o f centre (only in the footnotes, not 
the text) to the correction due to the eccentricity of a planet’s deferent.

centrum. I have occasionally used this mediaeval term in the footnotes to denote 
the angular distance from apogee (see below) to the centre of the epicycle.

elongation (dTtoxTl) is the angular distance along the ecliptic between two bodies 
or points. It is used particularly, but not exclusively, for the ecliptic distance 
between sun and moon.

apogee and perigee are simply transcriptions ordjroyEiov andTrepiyeiov, literally 
‘[point] far from earth’ and ‘[point] near to ea rth ’. These are the usual terms for 
the points on a body’s orbit which are respectively farthest from and nearest to 
the terrestrial observer. Ptolemy also uses the superlativ’e forms dTtOYEioTaTOv 
(TtepiyeiOTaTov) aTmEiov (‘point farthest from (nearest to) earth ’), with no 
obvious difi'erence in meaning. However, in the case of M ercury, translation of 
both by ‘perigee’ generates an ambiguity. For all other bodies, in Ptolem y’s 
models, the perigee is diam etrically opposite the apogee, but for M ercury the 
point of closest approach is about 120° from apogee. Ptolemy still refers to the 
point 180® from apogee as the ‘perigee’ (Ttepiyetov) for M ercury, and when he 
wants to refer to the point of that planet’s closest approach uses the superlative 
(;repiy£i6TaT0<;). I have m itigated the ambiguity by translating the latter, not 
as 'perigee', but as 'closest to earth ’ (for M ercury alone).

phase. Used for the fixed stars and planets, this is simply a transcription of(pdat<;, 
and is a general term including ail the significant 'configurations with respect to 
the sun' (listed by Ptolemy at V I I I4 pp. 409- 10, and exemplified in his partially 
extant work<pdaei(;d7r>.avSvdoT£pQ)v, ‘PhasesoftheFixedStars"), suchas first 
visibility at sunset, or last visibility just before dawn. But the literal meaning of 
(pdotc; is ‘appeai-ance’, and Ptolemy also uses it to mean specifically ‘first 
visibility’ of a body after a period of invisibility. To avoid ambiguity, I have 
translated the latter case by 'first visibility’, reserving ‘phase’ for the general 
term.
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(iv) Referring to sun and moon

conjunction is a fairly literal rendering of auvoSoc; (‘meeting’), but opposition 
renders TravaeXrivoq (literally ‘full m oon’, which occurs when sun and moon 
are in opposition), syzy’gy is a transcription ofthe convenient au^uyta (literally 
‘yoking together’), a general term to denote either or both conjunction and 
opposition. In eclipses the partial phases are denoted by immersion fejiTrTCOait;, 
‘falling in’, the phase from the beginning o fthe eclipse to totality) and emersion 
(dvanX-T^ptooic;, ‘filling up again’, the phase from the end of totality to the end of 
the eclipse). The total phase is denoted by |iOVTi (‘rem aining’) and rendered by 
duration {of totality).
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(v) Time-reckoning

Ptolem y often uses the term vuxGri^epov, which combines the Greek words for 
night and day, to m ean the ‘solar day’ of 24 hours. There is no such convenient 
term in English. I have generally translated it daj vyhen no am biguity is pos­
sible, but have occasionally resorted to periphrasis (e.g. II 3 p. 79= H I 96, 7-9). 
Since we use clocks, we reckon time by the mean solar day of uniform length, 
the average time taken by the sun to go from one m eridian crossing to the next. 
In antiquity, where the normal means of telling time was the sundial, it was 
usually reckoned by the true solar day, of varying length, the time taken by the 
sun to go from one meridian crossing to the next on a specific day. In III 9 
Ptolemy explains why they are diflerent, and how to transform one into the 
other. He uses the terms 6|jaXd vu^QT^^epa (‘uniform days’) and dvw^taXa 
vuxQ^nepot (‘non-uniform days’) for m ean and true solar days respectively. 
W hen he is talking about intervals, he often refers to those measured in true 
solar days as ‘reckoned simply’, and those measured in mean solar days as 
‘reckoned accurately’.

T he kind of hours normally used in the ancient world seasonal hours (copai 
KaipiKa'i), sometimes known as ‘civil hours’. An hour was i^th of the actual 
length of daylight or night-time at a given place, and hence the length of an 
hour varied according to terrestrial latitude and time of year, and a day-hour 
was of diflerent length from a night-hour except at equinox. For astronomical 
purposes, however, the uniform I'jth of a  day was used; these were known as 
equinoctial hours (wpai larm eptvai), because they were the same length as the 
seasonal hour a t equinox. If an ordinal num ber is attached to an hour, it 
indicates a seasonal iiour, counted from daw n (or sunset, if specified by ’of 
night’ or by the context). Thus ‘the si.xth hour’ is the same as noon.

time-degrees. Another way of measuring tim e was by the am ount of the celestial 
equator which had passed a bound (horizon or meridian). This was often con­
nected with the rising-times of ecliptic arcs (see pp. 18-19). This measurement 
was in degrees. Since 360° of the equator cross the m eridian in about one^day, 
one 'tim e-degree’ equals i^th of an equinoctial hour or 4 minutes. The Greek 
term is ^povoi lor|nepivoi (‘equatorial times’), sometimes abbreviated to 
Xpovot (‘times’).

(vi) Other

mean (^eooq) can imply ‘of average length’ (as in ‘m ean synodic m onth’) or 
‘uniform’ (as in ‘mean motion in longitude’).

hypothesis. W ith some hesitation, I have used this to translate bn6Qeoi<;, 
although the connotation in the Almagest never really coincides with the^ 
modern one. Whereas we use ‘hypothesis’ to denote a tentative theory which 
has still to be verified, Ptolemy usually means by U7cd0eai(; something more like 
‘model’, ‘system of explanation’, often indeed referring to ‘the hypotheses



which we have dem onstrated’. T he word still retains much of the etymological 
meaning of ̂ basis on which som ething else is constructed’. T he corresponding 
verbal forms are u7iOTi0eTai, UTCOKEitai, which I have frequently translated, 
not only as ‘assume’, but even as ‘it is given’. They are standard terms of Greek 
geometry in this sense at least as early as Euclid.
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6. Editorial procedures

Since the translation is based principally on theT eubner text of Heiberg (see p. 
3), it is keyed to that edition by the addition of H eiberg’s page numbers in the 
margin. There and elsewhere references to H eiberg are preceded by ‘H ’. Thus 
HI 236,15 means ‘Heiberg’s edition, Vol. I p. 236 line 15’. W here the context 
makes it unnecessary the volume num ber is omitted.

Brackets are used as follows. Square brackets [ ] enclose explanatory 
additions to or expansions of the Greek text by the translator. Curved brackets 
{ } enclose passages which I believe to be later additions to Ptolem y’s original 
text. Parentheses ( ) are used merely for clarity, better to express the author’s 
sequence of thought.

As explained on p. 5, I believe the list of chapter headings preceding each 
book to be a later addition. Nevertheless, since these serve a useful purpose, I 
have grouped them together at the beginning (pp. 27-32) to serve as a table of 
contents.

I have made no elfort to provide a continuous commentary, but refer the 
reader to the relevant sections in O laf Pedersen's J  Survey o f the Almagest 
(abbreviated ‘Pedersen’) and O. N eugebauer’s*-! History o f Ancient Mathematical 
Astronomy (abbreviated HAMA).  My footnotes are confmed to particulars not 
treated by them, or requiring some elaboration, and to textual corrections. In 
Appendix A, however, I have provided worked examples of every type of 
problem (including, where it is not utterly trivial, the use of the tables) which 
arises in the Almagest, except where Ptolemy himself gives a worked example. 
W here possible, my example is taken from a calculation or observation actually 
occurring in the Almagest. Appendix B lists all my corrections to Heiberg’s text. 
Appendix C discusses the problem of the derivation of Ptolem y’s planetary 
mean motions, which has never been adequately treated.

The index includes all proper names occurring in the text, and certain 
selected topics (mostly taken from the Introduction and footnotes). It also 
contains all observations recorded in the Almagest, under the topic or body 
concerned (e.g. ‘equinox’, ‘moon’). For a list of the observations in chrono­
logical order the reader is referred to Pedersen’s Appendix A.

In drawing the diagrams I have tried to reproduce the manuscript tradition, 
while at the same time making the figures as clear as possible by marking the 
points unambiguously. Since there is often considerable variation in the 
manuscript representations, I have been forced to make many choices; but I 
have not ‘modernized’ the figures. W here a  figure seemed inadequate, I have 
not changed it, but have added an explanatory one of my own. Such 
explanatory (and other supplementary) figures are distinguished by alpha-



Introduction: Conventional symbols 25

beticaJ num bering (‘Fig. A ’ etc.), whereas figures reproduced from the 
manuscripts are numbered according to the book and the order within that 
book (thus ‘Fig. 3.10’ indicates that this is the tenth diagram  in Book III; in the 
manuscripts they are not usually num bered, but where they are, they are 
num bered separately in each book). I have represented the Greek letters of the 
figures by the following system;

Text Trans. Text Trans. Text Trans.

A A 
B B 
r G 
A D 
E E 
Z Z 
H H 
0  0

I J
K  K  
A L 
M M 
N xN 
H X
o o

n P 
P R 

-2 S 
T  T  
Y Y 
O F 
X  Q  
'P V

7. Other conventional symbols and abbreviations

e eccentricity '
r  radius of epicycle or body
M  length of longest day in hours
m length of shortest day in hours
R  radius of principal circle (e.g. of deferent)
a  (I) right ascension (see p. 18)

(2) anomaly (see p. 21)
P celestial latitude
5 declination
£ obliquity of ecliptic
rj elongation
0 equation
1 inclination of orbit (of moon or planet)
K ‘centrum ’, i.e. distance from apogee (see p. 22)
X longitude
p (1) oblique ascension (see p. 18)

(2) geocentric distance
(p terrestrial latitude
Q) distance from northpoint on orbit

A bar over a letter denotes ‘m ean’, thus X = ‘mean longitude’.

T he following are used in a raised position (e.g. 2’’) to denote units: 

d days
h equinoctial hours



m
y
P
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%

months
years
‘parts’, i.e. the arbitrary  units in trigonom etrical calculations (see pp.
7-9)
degrees
demi degrees (2°® = 1°, see p. 8) 
degrees per day
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In the star catalogue only, * indicates some doubt about the reading. For other 
abbreviations particular to the star catalogue see p. 341 n.95.

Zodiacal signs
T Aries T 0̂  ̂= 0°
y Taurus 8 0° = 30°
n Gemini n 0° = 60°
12 Cancer £3 0° = 90°
n Leo a O'̂  = 120°
TTP Virgo n? 0° = 150°

L ibra 0̂  ̂= 180°
ni Scorpius n . 0® = 210°

Sagittarius 0*̂ = 240°
V> Capricorn us v> 0“ = 270°

Aquarius O'̂  = 300°
K Pisces K 0° = 330°

Planetary symbols

Other astronomical symbols

Vl Saturn
% Jup ite r
(5 M ars
9  Venus
§ M ercury

O  Sun
}) M oon

©  Earth
i l  ascending node 
I f  descending node

O n ‘sexagesimal’ representations such as 6,13; 10,0,58 see pp. 6-7.

For the m athem atical symbols)) and))) (both m eaning ‘is sim ilar to’) a n d =  (‘is 
congruent to’) see p. 17.

For ‘M. T. r  and ‘M. T. II’ see p.. 18.

For m anuscript abbreviations see pp. 3-4.
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Book I

1. {Preface^

T he true philosophers, Syrus,^ were, I think, quite right to distinguish the 
theoretical part of philosophy from the practical. For even if practical 
philosophy, before it is practical, turns out to be theoretical,® nevertheless one 
can see that there is a great difference between the two: in the first place, it is 
possible for many people to possess some of the m oral virtues even without being 
taught, whereas it is impossible to achieve theoretical understanding of the 
universe without instruction; furthermore, one derives most benefit in the first 
case [practical philosophy] from continuous practice in actual affairs, but in the 
other [theoretical philosophy] from making progress in the theory. Hence we 
thought it fitting to guide our actions (under the impulse of our actual ideas [of H5 
what is to be done]) in such a way as never to forget, even in ordinary affairs, to 
strive for a noble and disciplined disposition, but to devote niost of our time to 
intellectual matters, in order to teach theories, which are so many and 
beautiful, and especially those to which the epithet 'm athem atical’ is particu­
larly applied. For Aristotle divides theoretical philosophy too, very fittingly, 
into three prim ary categories, physics, m athem atics and theology.^ For 
everything that exists is composed of m atter, form and motion; none of these 
[three] can be observed in its substratum  by itself, w ithout the others: they can 
only be imagined. Now the first cause of the first motion o f the universe, if one 
considers it simply, can be thought of as an  invisible and  motionless deity; the *’ 
division [of theoretical philosophy] concerned with investigating this [can be 
called] ‘theology’, since this kind of activity, somewhere up in the highest 
reaches of the universe, can only be imagined, and is completely separated from

* This ‘philosophicid’ prcface and its relationship to Ptolemy’s attitude to philosophy is discuss«l 
by Boll, Studien 6 ^ 7 6 , to which the reader is referred for the relevant passages in ancient literature. 
The general standpoint is Aristotelian.

 ̂Syrus is also the addressee of a num ber of other works by Ptolemy (see T  oomer(5] 187). Nothing 
is known about him. The name is very common in (but not conflned to) Greco-Roman Egypt. The 
statement in a scholion to the Tetrabiblos (quoted by Boll, Studien 67, n. 2) that some say he was a 
fictitious person, others that he was a  doctor, merely reveals that he was equally unknown in late 
antiquity.

* Theon in his commentary (Rome I I 320,13-14) gives <pTio'i. . . ou^iPePtiKevai t 3  itpaKUK^ to  
Ttpotepov auTOU t o u  6 e (DPT]t ik o u  w yxaveiv. This is a paraphrase rather than a  diflerent reading, 
but shows thzt he understood the text as I have translated it. By this obscure expression I takUr 
Ptolemy to mean that before actually practising virtues one must have some concept of them (even 
though thb  b innate rather than taught).

’ E. g. Metaphysics E 1 ,10^6a 18 ff., wore Tpeiq dv etev (ptX.oocxpiai BempiiTiKai, paOripaTiicn, 
(puCTiicn, OeoXoYiKTi.



perceptible reality. The division [of theoretical philosophy] which investigates 
m aterial and ever-moving nature, and which concerns itself with ‘white’, ‘hot’, 
‘sweet’, ‘soft’ and suchlike qualities one may call ‘physics’; such an  order of 
being is situated (for the most part) am ongst corruptible bodies and  below the 
lunar sphere. T hat division [of theoretical philosophy] which determines the 

H6 nature involved in forms and m otion from place to place, and which serves to 
investigate shape, num ber, size, and  place, time and suchlike, one may define as 
‘m athem atics’. Its subject-m atter falls as it were in the middle between the 
other two, since, firstly, it can be conceived of both with and without the aid of 
the senses, and, secondly, it is an attribu te of all existing things without 
exception, both mortal and  immortal: for those things which are perpetually 
changing in their inseparable form, it changes with them, while for eternal 
things which have an aethereal® nature, it keeps their unchanging form 
unchanged.

From all this we concluded:® that the first two divisions of theoretical 
philosophy should rather be called guesswork than knowledge, theology 
because of its completely invisible and ungraspable nature, physics because of 
the unstable and unclear nature of m atter; hence there is no hope that 
philosophers will ever be agreed about them; and that only m athem atics can 
provide sure and unshakeable knowledge to its devotees, provided one 
approaches it rigorously. For its kind of proof proceeds by indisputable 
methods, namely arithmetic and geometry. Hence we were draw n to the 
investigation of that part of theoretical philosophy, as far as we were able to 
the whole of it, but especially to the theoiy concerning divine and heavenly 
things. For that alone is devoted to the investigation of the eternally 

H7 unchanging. For that reason it too can be eternal and unchanging (which is a 
proper attribute of knowledge) in its own domain, which is neither unclearnor 
disorderly. Furtherm ore it can work in the domains of the other [two divisions 
of theoretical philosophy] no less than they do. For this is the best science to help 
theolog>’ along its way, since it is the onh ’ one which can make a good guess at 
[the nature of] that activity which is unmoved and separated; [it can do this 
because] it is familiar with the attributes of those beings*” which are on the one 
hand perceptible, moving and being moved, but on the other hand eternal and 
unchanging, [I mean the attributes] having to do with motions and the 
arrangements of motions. As for physics, m athem atics can make a significant 
contribution. For almost every peculiar attribute of m aterial nature becomes 
apparent from the peculiarities of its motion from place to place. [Thus one can 
distinguish] the corruptible from the incorruptible by [whether it undergoes] 
motion in a straight line or in a circle, and heavy from light, and passive from 
active, by [whether it moves] towards the centre or away from the centre. With

36 I I .  Relation o f  astronomy to philosophy

®‘aetherear (a’i0ep(65n^) has a precise meaning in Aristotelian physics; everything above the 
sphere of the moon is composed o( an ‘incorruptible’ substance, unlike anything known on earth in 
its consistency (very thin) and in its natural motion (circular). Sec I 3 p. 40. One of the names for 
this substance is aether’, another Mifth essence’. See Campanus n. 56. pp. 394-5.

’ In this exaltation of mathematics above the other two divisions of philosophy Ptolemy parts 
company with Aristotle, for whom theology was the most noble pursuit for the human mind. 

‘“The heavenlv Imdies.



regard to virtuous conduct in practical actions and  character, this science, 
above all things, could make men see clearly; from the constancy, order, 
symmetry and calm which are associated with the divine, it makes its followers 
lovers of this divine beauty, accustoming them and  reform ing their natures, as it 
were, to a similar spiritual state.

It is this love of the contem plation of the eternal and unchanging which we 
constantly strive to increase, by studying those parts of these sciences which H8 
have already been mastered by those who approached them  in a genuine spirit 
of enquiry, and by ourselves attem pting to contribute as m uch advancement as 
has been m ade possible by the additional time between those people and 
ourselves." We shall try to note down*' everything which we think we have 
discovered up to the present time; we shall do this as concisely as possible and in 
a m anner which can be followed by those who have already m ade some progress 
in the f i e l d .F o r  the sake of completeness in our treatm ent we shall set out 
everything useful for the theory of the heavens in the proper order, but to avoid 
undue length we shall merely recount what has been adequately established by 
the ancients. However, those topics which have not been dealt with [by our 
predecessors] at all, or not as usefully as they might have been, will be discussed 
at length, to the best of our ability.

I  2. Order o f  the theorems 31

2. {On the order o f the theorems}

In the treatise which we propose, then, the fii'st order of business is to grasp the 
relationship of the earth taken as a whole to the heavens taken as a whole. In 
the treatm ent of the individual aspects which follows, we must first discuss the 
position of the ecliptic‘s and the regions of our part of the inhabited world and 
also the features differentiating each from the others due to the [varying] 
latitude at each horizon taken in order.** For if the theory of these matters is H9 
treated first it will make exam ination of the rest easier. Secondly, we have to go 
through the motion of the sun and of the moon, and the phenomena 
accom panying these [motions];*' for it would be impossible to e.xamine the 
theory of the stars*® thoroughly without first having a grasp of these matters.
O ur final task in this way of approach is the theory of the stars. Here too it 
would be appropriate to deal first w ith the sphere of the so-called ‘fixed stars’,*®

‘ ‘ This notion of the advancement of science, and particularly astronomy, by the additional time 
available is one to which Ptolem\ recurs in the epilos^ue t X III 11 p. 647), and also, in a specifically 
astronomical context, at VII 1 p. 321 and VII 3 p. 329.

‘-urtO|iVT)naTiaao6ai. A u7tO(ivr)|ia is a 'memoir', usually implying summary brevity. Ptolemy 
recurs to this too in the epilogue (X III 11 p. 647).

Ptolemy assumes that his readers will have a certain competence. See Introduction p. 6.
‘^I 3-8. O n the logic of Ptolemy's order see Introduction pp. 5-6.
” I 12-16. The mathematical section I 10-11 is not specifically mentioned here.

Book II.
■’ Books III-V I.
‘“‘Stars’ here and throughout chs. 3-8 includes both fixed stars and planets (see Introduction p. 

21) and also, sometimes, sun and moon.
’’ Books V II-V III.



and follow that by treating the five ‘planets’, as they are called.^® We shall try to 
provide proofs in all of these topics by using as starting-points and  foundations, 
as it were, for our search the obvious phenom ena, and those observations made 
by the ancients and in our own times which are reliable. We shall a ttach  the 
subsequent structure of ideas to this [foundation] by means of proofs using 
geometrical methods.

The general preliminary discussion covers the following topics: the heaven is 
spherical in shape, and moves as a  sphere; the earth  too is sensibly spherical in 
shape, when taken as a whole; in position it lies in the middle of the heavens very 
much like its centre; in size and distance it has the ratio of a point to the sphere of 

H10 the fixed stars; and it has no motion from place to place. We shall briefly discuss 
each of these points for the sake of reminder.

38 /  3. Sphericity o f  the heavens

3. {That the heavens move like a sphere]^^

It is plausible to suppose that the ancients got their first notions on these topics 
from the following kind of observations. They saw that the sun, moon and other 
stars were carried from east to west along circles which were always parallel to 
each other, that they began to rise up from below the earth  itself, as it were, 
gradually got up high, then kept on going round in similar fashion and getting 
lower, until, falling to earth, so to speak, they vanished completely, then, after 
remaining invisible for some time, again rose afresh and set; and [they saw] that 
the periods of these [motions], and also the places of rising and setting, were, on 
the whole, fixed and the same.

W hat chiefly led them to the concept of a sphere was the revolution of the 
ever-visible stars, which was observed to be circular, and always taking place 
about one centre, the same [for all]. For by necessity tha t point became [for 

HI I them] the pole of the heavenly sphere: those stars which were closer to it 
revolved on smaller circles, those that were farther away described circles ever 
greater in proportion to their distance, until one reaches the distance of the stars 
which become invisible. In the case of these, too, they saw that those near the 
ever-visible stars remained invisible for a short time, while those farther away 
remained invisible for a long time, again in proportion [to their distance]. The 
result was that in the beginning they got to the aforementioned notion solely 
from such considerations; but from then on, in their subsequent investigation, 
they found that everything else accorded with it, since absolutely all 
phenom ena are in contradiction to the alternative notions which have been 
propounded.

For if one were to suppose that the stars’ motion takes'place in a straight line 
towards infinity, as some people have thought,^^ w hat device could one

^  Books IX -X IIl.
See Pedersen 36-7.
According to Theon’s commencary (Rome II 338) this belief was Epicurean, but I know of no 

other evidence. The only other relevant passage appears to be Xenophanes, D iek-Kranz A41a (the 
sun really moves towards infinity).



conceive of which would cause each of them  to  appear to  begin their motion 
from the same starting-point every day? How could the  stars tu rn  back, if their 
motion is towards infinity? Of, if they did tu rn  back, how could this not be 
obvious? [O n such a hypothesis}, they m ust gradually dim inish in  size until they 
disappear, whereas, on the contrary, they are seen to  be greater a t the very 
m om ent of their disappearance, a t which tim e they are gradually obstructed 
and cut off, as it were, by the earth ’s surface.

But to suppose that they are kindled as they rise o u t o f the earth  and  are 
extinguished again as they fall to earth  is a  completely absurd hypothesis.”  For 
even if we were to concede that the strict order in their size and  number, their H12 
intervals, positions and periods could be restored by such a  random  and  chance 
process; that one whole area of the earth  has a  kindling nature, and another an 
extinguishing one, or rather that the same part [of the earth] kindles for one set 
of observers and extinguishes for another set; and that the same stars are already 
kindled or extinguished for some observers while they are not yet for others: 
even if, I say, we were to concede all these ridiculous consequences, what could 
we say about the ever-visible stars, which neither rise nor set? Those stars which 
are kindled and extinguished ought to rise and set for observers everywhere, 
while those which are not kindled and extinguished ought always to be visible 
for observers everywhere. W hat cause could we assign for the fact that this is not 
so? We will surely not say that stars which are kindled and extinguished for 
some observers never undergo this process for other observers. Yet it is utterly 
obvious that the same stars rise and set in certain regions [of the earth] and do 
neither at others.

To sum up, if one assumes any motion whatever, except spherical, for the 
heavenly bodies, it necessarily follows tha t their distances, measured from the 
earth  upwards, must vary, wherever and however one supposes the earth  itself 
to be situated. Hence the sizes and m utual distances o f the stars must appear to 
vary for the same observers during the course of each revolution, since at one H13 
time they must be at a  greater distance, a t another a t a  lesser. Yet we see that no 
such variation occurs. For the apparent increase in their sizes a t the horizons^^ is 
caused, not by a decrease in their distances, but by the exhalations of moisture 
surrounding the earth  being interposed between the place from which we 
observe and the heavenly bodies, just as objects placed in w ater appear bigger 
than they are, and the lower they sink, the bigger they appear.

T he following considerations also lead us to the concept of the sphericity, of 
the heavens. No other hypothesis but this can explain how sundial constructions 
produce correct results; furthermore, the motion of the heavenly bodies is the 
most unham pered and free of all motions, and freest motion belongs am ong
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^^Theon (Rome I I 340) ascribes this to Heraclitus. Otherwise it is attested for Xenophanes (Dieis- 
Kranz A38), and was adm itted as one p>o$sibie explanation by Epicurus (e.g. Letter to Pythocles 92) 
and his followers.

Ptolemy refers to the well-known phenomenon that the sun and moon appear larger when close 
to the horizon. He js(ives an incoiTect physical and optical explanation here. In a  later work {Optics 
III 60, ed. Lejeune p. 116) he correctly explains it as a purely psychological phenomenon. N o doubt 
instrumental measurement o fjhe  apparent diameters had convinced him that the enlargement is 
entirely illusory.



plane figures to the circle and am ong solid shap>es to the sphere; similarly, since 
of'diflerent shapes having an equal boundary those with more angles are greater 
[in area or volume], the circle is greater than [all other] surfaces, and the sphere 
greater than [all other] so lids;[likew ise] the heavens are greater than all other 
bodies.

Furtherm ore, one can reach this kind of notion from certain physical 
H14 considerations. E.g., the aether is, of all bodies, the one with constituent parts 

which are finest and most like each other; now bodies with parts like each other 
have surfaces with parts like each other; but the only surfaces with parts like each 
other are the circular, am ong planes, and the spherical, am ong three- 
dimensional surfaces. And since the aether is not plane, but three-dimensional, 
it follows that it is spherical in shape. Similarly, nature formed all earthly and 
corruptible bodies out of shapes which are round but of unlike parts, but all 
aethereal and divine bodies out of shapes which are of like parts and spherical. 
For if they were ilat or shaped like a discus*® they would not always display a 
circular shape to all those observing them simultaneously from different places 
on earth. For this reason it is plausible that the aether surrounding them, too, 
being of the same nature, is spherical, and because of the likeness of its parts 
moves in a circular and uniform fashion.

40 1 4 . Sphericity o f  the earth

4. [That the earth loo, taken as a whole, is sensibly sphericalY^

T hat the earth, too, taken as a w h o le , is  sensibly spherical can best be grasped 
from the following considerations. We can see, again, tha t the sun, moon and 

H15 other stars do not rise and set simultaneously for ever\'one on earth , but do so 
earlier for those more towards the east, later for those towards the west. For we 
find that the phenom ena at eclipses, especially lunar eclipses,^® which take 
place at the same time [for all observers], are nevertheless not recorded as 
occurring at the same hour (that is at an equal distance from noon) by all 
observers. R ather, the hour recorded by the more easterly observers is always 
later than that recorded by the more westerly. We find that the differences in 
the hour are prof>ortional to the distances between the places [of observation]. 
Hence one can reasonably conclude that the earth ’s surface is spherical, 
because its evenly curving surface (for so it is when considered zs. a  whole) cuts 
off [the heavenly bodies] for each set of observers in turn  in a regular fashion.

If the earth ’s shape were any other, this would not happen, as one can see 
from the following arguments. If it were concave, the stars would be seen rising 
first by those more towards the west; if it were plane, they would riise and set

These propositions were proved in a work by Zenodorus (early second century a c ,  see 
Toomer(l]) from which extensive excerpts are given by (amongothers) Theon (Rome I I 355-79). 
There is a good summary in H eath H GM  II 207-13.

**The only relevant passage I know is Empedocles, Diels-Kranz A60, who m aintained that the 
moon is disk-shaped.

” See Pedet^en 37-9.
**‘taken as a whole’: ignoring local irregularities such as mountains, which are negligible in 

comparison to the total mass.
” The timings for solar eclipses are complicated by parallax.



simultaneously for everyone on earth; if it were triangular or square or any 
other polygonal shape, by a similar argument, they would rise and set simul­
taneously for all those living on the same plane surface. Yet it is apparent that 
nothing like this takes place. N or could it be cylindrical, w ith the curved surface 
in the east-west direction, and the flat sides towards the poles of the universe, H I6 
which some might suppose more plausible. This is clear from the following: for 
those living on the curved surface none of the stars would be ever-visible, but 
either all stars would rise and set for all observers, o r the same stars, for an equal 
[celestial] distance from each of the poles, would always be invisible for all 
observers. In fact, the further we travel toward the north, the more^® of the 
southern stars disappear and the more of the northern stars appear. Hence it is 
clear tha t here too the curvature of the earth cuts off[the heavenly bodies] in a 
regular fashion in a north-south direction, and proves the sphericity [of the 
earth] in all directions.

There is the further consideration that if we sail towards mountains or 
elevated places from and to any direction whatever, they are observed to 
increase gradually in size as if rising up from the sea itself in which they had 
previously lieen submerged: this is due to the curv'ature of the surface of the 
water.

/  5. Central position o f  the earth 41

5. {Thai the earth is in the middle o f the heavensY^

O nce one has grasped this, if one next considers the position of the earth, one 
will fmd that the phenom ena associated with it could take place only if we HI 7 
assume that it is in the middle of the heavens, like the centre of a sphere. For if 
this were not the case, the earth  would have to be either

[a] not on the axis [of the universe] but equidistant from both poles, or
[b] on the axis but removed towards one of the poles, or
[c] neither on the axis nor equidistant from both poles.

Against the first of these three p>ositions m ilitate the following arguments. If 
we imagined [the earth] removed towards the zenith or the nadir of some 
observer, then, if he were at sphaera recta, he would never experience equinox, 
since the horizon would always divide the heavens into two unequal parts, one 
above and one below the earth; if he were at sphaera obliqua, either, again, 
equinox would never occur at all, or, [if it did occur,] it would not be at a 
position halfway between summ er and winter solstices, since these intervals 
would necessarily be unequal, because the equator, which is the greatest of all 
parallel circles drawn about the poles of the [daily] motion, would no longer be 
bisected by the horizon; instead [the horizon would bisect] one of the circles 
parallel to the equator, either to the north or to the south of it. Yet absolutely 
everyone agrees that these intervals are equal everywhere on earth, since H18 
[everywhere] the increment of the longest day over the equinoctial day a t the

^R ead in g  itXeiova (with D) for rd  nXeiova at H I6,9. Corrected by Manitius.
^•See Pedersen 39-42.



summer solstice is equal to the decrem ent of the shortest day from the 
equinoctial day at the w inter solstice. But if, on the other hand, we imagined the 
displacement to be towards the east or west o f some observer, he would find that 
the sizes and distances of the stars would not rem ain constant and unchanged at 
eastern and western horizons, and that the tim e-interval from rising to 
culmination would not be equal to the interval from culm ination to setting. 
This is obviously completely in disaccord with the phenomena.

Against the second position, in which the earth  is imagined to lie on the axis 
removed towards one of the poles, one can make the following objections. If  this 
were so, the plane of the horizon would divide the heavens into a part above the 
earth and a part below the earth  which are unequal and always different for 
different la titu d e s ,w h e th e r  one considers the relationship of the same part at 
two different latitudes or the two parts at the same latitude. Only Aisphaera recta 
could the horizon bisect the sphere; at a sphaera obliqua situation such that the 
nearer pole were the ever-visible one, the horizon would always make the part 
above the earth lesser and the part below the earth greater; hence another 
phenomenon would be that the great circle of the ecliptic would be divided into 

H19 unequal parts by the plane of the horizon. Yet it is apparent that this is by no 
means so. Instead, six zodiacal signs are visible above the earth  at all times and 
places, while the rem aining six are invisible; then again [at a later time] the 
latter are visible in their entirety above the earth, while at the same time the 
others are not visible. Hence it is obvious that the horizon bisects the zodiac, 
since the same semi-circles are cut off by it, so as to appear at one time 
completely above the earth, and at another [completely] below it.

And in general, if the earth were not situated exactly below the [celestial] 
equator, but were removed towards the north or south in the direction of one of 
the pxjles, the result would be that at the equinoxes the shadow of the gnomon at 
sunrise would no longer form a straight line with its shadow at sunset in a plane 
parallel to the horizon, not even s e n s ib ly .Y e t this is a phenom enon which is 
plainly observed everywhere.

It is immediately clear that the third position enum erated is likewise 
impossible, since the sorts of objection which we m ade to the first [two] will both 
arise in that case.

To sum up, if the earth  did not lie in the middle [of the universe], the whole 
order of things which we observe in the increase and decrease of the length of 
daylight would be fundam entally upset. Furtherm ore, eclipses of the moon 
would not be restricted to situations where the moon is diametrically opposite 
the sun (whatever part of the heaven [the luminaries are in]), since the earth 

H20 would often come between them when they were not diametrically opposite, 
but at intervals of less than a semi-circle.

42 /  5. Central position o f  the earth

^^The word translated here and elsewhere as ‘{terrestrial] latitude’ is KXi(ia, for the meaning of 
which see Introduction p. 19.

’̂ The caveat ‘scruibly’ is inserted because the equinox is not a date but an instant of time. 
Therefore on the day of equinox the sun docs not rise due east and set due west (as is implied by the 
rising and setting shadows lying on the same straight line). However, the difference would be 
‘imperceptible to the senses’.



6. {That the earth has the ratio o f a point to the heavens}^*

Moreover, the earth has, to the senses, the ratio of a point to the distance of the 
sphere of the so-called fixed stars. A strong indication of this is the fact that the 
sizes and distances of the stars, at any given time, appear equal and the same 
from all parts of the earth everywhere, as observations of the same [celestial] 
objects from different latitudes are found to have not the least discrepancy from 
each other. O ne must also consider the fact that gnomons set up in any part of 
the earth  whatever, and likewise the centres of arm illary spheres,^* operate like 
the real centre of the earth; that is, the lines of sight [to heavenly bodies] and the 
paths of shadows caused by them agree as closely with the [mathematical] 
hypotheses explaining the phenom ena as if they actually passed through the real 
centre-point of the earth.

Another clear indication that this is so is tha t the planes drawn through the; 
observer’s lines of sight at any point [on earth], which we call ‘horizons’, always 
bisect the whole heavenly sphere. This would not happen if the earth were of H21 
perceptible size in relation to the distance of the heavenly bodies; in that case 
only the plane drawn through the centre of the earth  could bisect the sphere, 
while a plane through any point on the surface of the earth  would always make 
the section [of the heavens] below the earth  greater than  the section above it.

/  6. Earth negligibly small in relation to heavens 43

7. {That the earth does not have any motion from place to place, either]^^

O ne can show by the same arguments as the preceding th a t the earth cannot 
have any motion in the aforementioned directions, or indeed ever move at all 
from its position at the centre. For the same phenom ena would result as would if 
it had any position other than the central one. Hence I think it is idle to seek for 
causes for the motion of objects towards the centre, once it has been so clearly 
established from the actual phenom ena that the earth  occupies the middle 
place in the universe, and that all heavy objects are carried towards the earth.
T he following fact alone would most readily lead one to this notion [that all 
objects fall towards the centre]. In absolutely all parts of the earth, whiclf, as we 
said, has been shown to be spherical and in the middle of the universe, the 
direction^® and path of the motion (I mean the proper, [natural] motion) of all H22 
bodies possessing weight is always and everywhere at right angles to the rigid 
plane draw n tangent to the point of impact. It is clear from this fact that, if

^^See Pedersen 42-3.
Ptolemy qualifies the traditional terminologv- for the fixed stars as ‘so-called’ (KaX.ounevtov) 

because they do in fact, according to him, have a motion (the modern ‘precession’). He develops the 
point further at V I I 1 p. 321, q.v. In general, however, he uses the traditional terminology without 
qualification.

An example of an armillary sphere (KpiKtoTii ocpafpa) is the ‘astrolabe’ described in V 1. For 
references to the term in other works see LSJ s.v. KptKCOTÔ .

”  See PedcRcn 43-4.
■*®7tp6CTveiXTi<;, which I have translated ‘the direction of motion’ here, means basically ‘direction 

in which something points’ (for astronomical usages see V 5 p. 227 n. 19 and V I I I  p. 313 n. 77). 
Thus it would also include here the direction of a plumb-line (cf. I 12 p. 62).



[these falling objects] were not arrested by the surface of the earth, they would 
certainly reach the centre of the earth  itself, since the straight line to the centre is 
also always at right angles to the plane tangent to the sphere a t the point of 
intersection [of that radius] and the tangent.

Those who think it paradoxical that the earth, having such a great weight, is 
not supported by anything and yet does not move, seem to me to be m aking the 
mistake of judging on the basis of their own experience instead of taking into 
account the peculiar nature of the universe. They would not, I think, consider 
such a thing strange once they realised that this great bulk of the earth, when 
com pared with the whole surrounding mass [of the universe], has the ratio of a 
point to it. For when one looks at it in th a t way, it will seem quite possible that 
that which is relatively smallest should be overpowered and pressed in equally 
from all directions to a position of equilibrium  by that which is the greatest of all 

H23 and of uniform nature. For there is no up and down in the universe with respect 
to itself,^® any more than one could imagine such a thing in a sphere: instead the 
proper and natural motion of the com pound bodies in it is as follows: light and 
rarefied lx>dies drift outwards towards the circumference, but seem to move in 
the direction which is ‘up ’ for each obsei-ver, since the overhead direction for all 
of us, which is also called ‘up’, points towards the surrounding surface;^" heavy 
and dense bodies, on the other hand, are carried towards the middle and the 
centre, but seem to fall downwards, because, again, the direction which is for all 
us towards our leet, called ‘down’, also points towards the centre of the earth. 
These heavy bodies, as one would cxpect, settle about the centre because of 
their m utual pressure and resistance, which is equal and uniform from all 
directions. Hence, too, one can sec that it is plausible that the earth, since its 
total mass is so great com pared with the bodies which fall towards it, can remain 
motionless under the impact of these very small weights (for they strike it from 
all sides), and receive, as it were, the objects falling on it. If  the earth  had a single 
motion in common with other heavy objects, it is obvious that it would be 
carried down faster than all of them because of its much greater size: living 

H24 things and individual heavy objects would be left behind, riding on the air, and 
the earth itself would very soon have fallen completely out of the heavens. But 
such things are utterly ridiculous merely to think of.

But certain people,^' [propounding] w hat they consider a more persuasive 
view, agree with the above, since they have no argum ent to bring against it, but 
think that there could be no evidence to oppose their view if, for instance, they 
supposed the heavens to remain motionless, and the earth  to revolve from west 
to east about the same axis [as the heavens], making approxim ately one 
revolution each day;^^ or if they m ade both heaven and earth  move by any 
am ount whatever, provided, as we said, it is about the same axis, and in such a

Read ini? auTOV (with D, Is) for aoTTiv at H 23,l.
** It is not clear to me whether Ptolemy means the outmost boundary of the universe or merely the 

surface (of the ‘aether’) surrounding the earth.
Heraclides of Pontos (late fourth century RG ) is the earliest certain authority for the view that 

the earth rotates on its axis. Sec H AM A  I I 694-6. It was also adopted by Aristarchus as part of his 
more radical heliocentric hypothesis.

^^‘approximately’ because one revolution takes place in a sidereal, not a solar day.
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way as to preserve the overtaking of one by the other. However, they do not 
realise that, although there is perhaps nothing in the celestial phenomena 
which would count against that hypothesis, at least from simpler considerations, 
nevertheless from what would occur here on earth  and in the air, one can see 
that such a notion is quite ridiculous. Let us concede to them  [for the sake of 
argum ent] that such an unnatural thing could happen as that the most rare and 
light of m atter should either not move a t all or should move in a way no different 
from that of m atter with the opposite nature (although things in the air, which 
are less rare [than the heavens] so obviously move with a more rapid motion 
than any earthy object); [let us concede that] the densest and heaviest objects H25 
have a proper motion of the quick and unilbrm  kind which they suppose 
(although, again, as all agree, earthy objects are sometimes not readily moved 
even by an external force). Neverthi less, they would have to admit that the 
revolving motion of the earth must be the most violent ofall motions associated 
with it, seeing that it makes one revolution in such a short time; the result would 
be that all objects not actually standing on the earth  would appear to have the 
same motion, opposite to that of the earth: neither clouds nor other Hying or 
thrown objects would ever he seen moving towards the east, since the earth’s 
motion towards the east would always outi un and overtake them, so that all 
other objects would seem to move in the direction of the west and the rear. But if 
they said that the air is carried around in the same direction and with the same 
speed as the earth, the compound objects in the air would none the less always 
seem to be left behind by the motion of both [earth and air]; or if those objects 
too were carried aroimd, fused, as it were, to the air, then they would never 
appear to have an\ motion either in advance or rearwards: they would always 
appear still, neither wandering about nor changing position, whether they were 
living or thrown objects. Yet we quite plainly see that they do undergo all these H26 
kinds of motion, in such a w a\’ that they are not even slowed down or speeded up 
at all bv anv motion of the earth.

I  7. Earth’s rotation denied 45

8. { T/ia/ there are two different primary motions in the heavensY^

It was necessary to treat the above hypotheses first as an introduction to the 
discussion of particular topics and what follows after. T he above summary 
outline of them will sullice. since they will be completely confirmed and further 
proven by the agreement with the phenom ena of the theories which we shall 
dem onstrate in the following sections. In addition to these hypotheses, it is 
proper, as a further preliminary, to introduce the following general notion, that 
there are two different prim ary motions in the heavens. O ne of them is that 
which carries everything from east to west: it rotates them  with an unchanging 
and uniform motion along circles parallel to each other, described, as is 
obvious, about the poles of this sphere which rotates everything uniformly. The 
greatest of these circles is called the ‘equator’, b e c a u s e  it is the only [such

■•̂ See Pedersen 45.
” ‘equator’: imuiEpivo^, literally ‘ot equal day’ or ‘equinoctial’. See Introduction p. 19.



parallel circle] which is always bisected by the horizon (which is a great circle), 
and because the revolution which the sun makes when located on it produces 
equinox everywhere, to the senses. T he other m otion is that by which the 

H27 spheres of the stars perform movements in the opposite sense to the first motion, 
about another pair of poles, which are different from those of the first rotation. 
W e suppose that this is so because of the following considerations. W hen we 
observe for the space of any given single day, all heavenly objects w hatever are 
seen, as far as the senses can determine, to rise, culm inate and  set a t places 
which are analogous and lie on circles parallel to the equator; this is 
characteristic of the first motion. But when we observe continuously without 
interruption over an interval of time, it is apparent that while the other stars 
retain their m utual distances and (for a long time) the particular characteristics 
arising from the positions they occupy as a result of the first motion,*^ the sun, 
the moon and the planets have certain special motions which are indeed 
complicated and different from each other, but are all, to characterise their 
general direction,^* towards the east and opposite to [the motion ol] those stars 
which preserve their m utual distances and are, as it were, revolving on one 
sphere.

Now if this motion of the planets too took place along circles parallel to the 
equator, that is, about the poles which produce the first kind of revolution, it 

H28 would be sufficient to assign a single kind of revolution to all alike, analogous to 
the first. For in that case it would have seemed plausible that the movements 
which they undergo are caused by various retardations, and not by a motion in 
the opposite direction. But as it is. in addition to their movement towards the 
east, they are seen to deviate continuously to the north and south [of the 
equator]. M oreover the am ount of this deviation cannot be explained as the 
result of a uniformly-acting force pushing them to the side: from that point of 
view it is irregular, but it is regular if considered as the result of [motion on] a 
circle inclined to the equator. Hence we get the concept of such a circle, which is 
one and the same for all planets, and particular to them. It is precisely defined 
and, so to speak, draw n by the motion of the sun, but it is also travelled by the 
moon and the planets, which always move in its vicinity, and do not randomly 
pass outside a zone on either side of it which is determ ined for each body. Now 
since this too is shown to be a great circle, since the sun goes to the north and 
south of the equator by an equal am ount, and since, as we said, the eastward 
motion of all of the planets takes place on one and the same circle, it became 
necessaiT to suppose that this second, different motion of the whole takes place 

H29 about the poles of the inclined circle we have defined [i.e. the ecliptic], in the 
opposite direction to the first motion.

If, then, we imagine a great circle draw n through the poles of both the above- 
mentioned circles, (which will necessarily bisect each of them, that is the 
equator and the circle inclined to it [the ecliptic], at right angles), we will have 
four points on the ecliptic; two will be produced by [the intersection of] the

46 1 8 . Tw o primary motions in the heavens

These characteristics ol the (ixed stars are e.g. dates of first and last visibility. They are 
unchanged 'for a lonjj time’ because the ell’ect of precession is ver\- slow.

’“The c|ualification is inserted here to allow lor the retrogradations of the planets.



equator, diam etrically opposite each other; these are called ‘equinoctial’ 
points. T he one a t which the motion [of the planets] is from south to north is 
called the ‘spring’ equinox, the other the ‘autum nal’. Tw o [other points] will be 
produced by [the intersection of] the circle drawn through both poles; these too, 
obviously, will be diametrically opposite each other; they are called ‘tropical’
[or ‘solsticial’] points. T he one south of the equator is called the ‘winter’ 
[solstice], the one north, the ‘summ er’ [solstice].

We can imagine the first prim ary motion, which encompasses all the other 
motions, as described and as it were defined by the great circle drawn through 
both pK)les [of equator and ecliptic] revolving, and carrying everything else with 
it, from east to west about the poles of the equator. These poles are fixed, so to 
speak, on the ‘m eridian’ circle, which differs from the aforementioned [great] H30 
circle in the single respect that it is not drawn through the poles of the ecliptic 
too at all p>ositions of the latter. Moreover, it is called ‘m eridian’ because it is. 
considered to be always orthogonal to the horizon.^’ For a circle in such a 
position divides both hemispheres, that above the earth  and that below it. into 
two equal parts, and defines the midpoint of both day and night.

The second, m ultiple-part motion is encompassed by the first and encom­
passes the spheres of all the planets. As we said, it is carried around by the 
afoi'cmentioned [first motion], but itself goes in the opposite direction about the 
poles of the ecliptic, which are also fixed on the circle which produces the first 
motion, namely the circle through both poles [of ecliptic and equator]. 
N aturally they [the poles of the ecliptic] are carried around with it [the circle 
through both poles], and. throughout the period of the second motion in the 
opposite direction, they always keep the gi'eat circle of the ecliptic, which is 
described by that [second] motion, in the same position with respect to the 
equator.^®

I  9. The individual demonstrations 47

9. {On the individual concepts]

Such, then are the necessary preliminary concepts which must be summarily set 
out in our general introduction. VVe are now about to begin the individual 
demonstrations, the first of which, we think, should be to determ ine the size of H31 
the arc between the aforementioned poles [of the ecliptic and equator] along the 
great circle draw n through them. But we see that it is lli-st necessary to explain 
the m ethod of determ ining chords;^® we shall dem onstrate the whole topic 
geometrically once and for all.

■‘’ See Introduction p. 19.
“̂M y translation follows the interpretation of Theon (Rome II 447). Manitius (p. 24 n. a p  

wrongly considers Tot) ypaiponevou 5 i’ outtic; neyioTOu icdt A.o4oD kokXou interpolated, partly 
Ijecause he misinterprets ouvTTjpotSaiv (which is used here in a way similar to ouvTiipov5oav at HI
6 , 10).

’̂ ‘chords’: literally ‘straight lines in a circle’. On this term see Introduction p. 17.



Book III
{PrefaceY

In the preceding part of our treatise we have dealt w ith those asf>ects of heaven 
and earth  which required, in outhne, a prelim inary m athem atical discussion; H191 
also the inclination of the sun’s path through the ecliptic, and the resultant 
particular phenomena, both at sphaera recta and a t sphaera obliqua for every 
inhabited region. VVe think that we should [now] discuss, as the subject which 
appropriately follows the above, the theory of the sun and moon, and go 
through the phenom ena which are a consequence of their motions. For none of 
the phenom ena associated with the [other] heavenly bodies can be completely 
investigated without the previous treatm ent o f these [two]. Furtherm ore, we 
find that the subject of the sun’s motion must take first place amongst these [sun 
and moon], since without that it would, again, be impossible to give a complete 
discussion of the moon's theory from start to finish.

1. {On the length o f the year}"

T he very first of the theorems concerning the sun is the determ ination of the 
length of the year. The ancients were in disagreem ent and confusion in their 
pronouncem ents on this topic, as can be seen from their treatises, especially 
those of H ipparchus, who was both industrious and a lover of truth. The main 
cause of the confusion on this topic which even he displayed is the fact that, when 
one examines the apparent returns [of the sun] to [the same] equinox or sobtice, 
one finds that the length of the year exceeds 365 days by less than i-day, but when H192 
one examines its return to [one of] the fixed stars it is greater [than 365i days].
Hence H ipparchus comes to the idea that the sphere of the fixed stars too has a 
very slow motion, which, just like that of the planets, is towards the rear with 
respect to the revolution producing the first [daily] motion, which is that of a 
[gieat] circle drawn through the poles o f both equator and ecliptic. ̂

As for us, we shall show this is indeed the case, and how it takes place, in 
our discussion of the fixed stars'* (the theory of the fixed stars, too, cannot be

' D and part of the Arabic tradition (L, P, but not Q, T) begin chapter 1 at this point. O n such 
variations, and the conclusion to be drawn, see Introduction p. 5.

^See HAM A  54-5, Pede«-sen 128-34.
 ̂This characterisation of the daily motion by means of the rotation of a great circle through the 

{X»les of equator and ecliptic refers back to I 8 p. 47.
"V II 2-3.



yearly motions above and the hourly motions below, and the third will contain 
the monthly motions above and the daily motions below. T he numbers 
representing time will be in the first [i.e. left-hand] section, and the 
corresfKJnding degrees, obtained by successive addition of the appropriate 
am ount for each [time-unit], in the second [i.e. right-hand] section. The tables 
are as follows.
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2. {Table o f the mean motion o f the sun}"^ H 2I0 15

[See pp. 142-3.]

3. {On the hypotheses for uniform circular motionY'^ H216

O ur next task is to dem onstrate the apparent anomaly of the sun. But first we 
must make the general point that the rearward displacements of the planets 
with r espect to the heavens are, in every case, just like the motion ol the universe 
in advance, by nature uniform and circular. T h a t is to say, if we imagine the 
bodies or their circles being carried around by straight lines, in absolutely every 
case the straight line in question describes equal angles at the centre of its 
revolution in equal times. The apparent irregularity [anomaly] in their motions 
is the result of the position and order ol'those circles in the'sphere ol'each by 
means of which they carry out their movements, and in reality there is in essencc 
nothing alien to their eternal nature in the ’disorder' which the phenomena are 
supposed to exhibit. The reason for the appearancc of irregularity can be 
explained by two hypotheses, which are the most basic and simple. When their 
motion is viewed with respect to a circle imagined to be in the plane of the 
ecliptic, the centre of which coincides with the centre of the universe (thus its 
centre can be considered to coincide with our point o f view), then we can 
suppose, either that the uniform motion of each [body] takes place on a circle 
which is not concentric with the universe, or that they have such a concentric 
circle, but their uniform motion takes place, not actually on that circle,*but on H217 
another circle, which is carried by the first circle, and [hence] is known as the 
'epicycle’. It will be shown that either of these hypotheses will enable [the 
planets] to appear, to our eyes, to traverse unequal arcs of the ecliptic (which is 
concentric to the universe) in equal times.

In the eccentric hypothesis: [see Fig. 3.1] we imagine the eccentric circle, on 
which the body travels with uniform motion, to be ABGD on centre E, with 
diam eter AED, on which point Z represents the observer.^' Thus A is the 
apogee, and D the perigee. We cut off equal arcs AB and DG, and join BE, BZ,
GE and GZ. Then it is immediately obvious that the body will traverse the arcs

Corrections to Heiberg’s text: H 210,23-5, colum noffourths(forargum ents342,360and378).
A misprint has disrupted the order, which should beX, va, tP, but has become va, ip.X. (51,12,30).
H 215,38, thirds : Xe (35): Xq, as Is.

^®See HAMA  55-7, Pedersen 134-44.
" ‘the observer’; literally ‘our point of view’.
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TABLE O F T H E SUN’S MEAN M O TIO N

Distance [in Anomaly] from the Sun’s Apogee in n  5;30° to its M ean 
Longitude in the 1st Year of Nabonassar, 0;45° : 265; 15°

18-Year 
Periods 0 - //f ////

18 355 37 25 36 ' 20 34 30
36 351 14 51 12 41 9 0
54 346 52 16 49 1 43 30

72 342 29 42 25 22 18 0
90 338 7 8 1 42 52 30

108 333 44 33 38 3 27 0

126 329 21 59 14 24 1 30
144 324 59 24 50 44 36 0
162 320 36 50 ■>7 5 10 30

180 316 14 16 3 25 45 0
198 311 51 41 39 46 19 30
216 307 29 7 16 1 ^ 54 0

234 303 6 32 52 27 28 30
252 298 43 58 28 1 3 0
270 294 21 24 5 i 37 30

288 289 58 49 ! -̂ 1 ! 29 12 0
306 285 36 15 i 17 1 49 46 30
324 281 13 40 i 54 10 21 0

342 27(i 5! 6 3(t 1 30 55 30
3(U) 272 28 32 1 30 0
378 268 5 57 43 1 12 4 30

396 263 43 23 19 1 32 39 1
414 259 20 48 55 ! 53 13 ; 30
432 254 58 14 1 32 1  13 48 ! <»
450 250 35 40 1 « i  34 22 30
468 24«i 13 5 44 I i 57 0
486 241 50 31 I 21 1 1 31 1 30

504 237 27 56 57 36 6 0
522 233 5 22 33 56 40 30
540 228 42 48 10 17 15 0

558 224 20 13 46 37 49 30
576 219 57 39 22 58 24 0
594 215 35 4 59 18 58 30

612 211 12 30 35 39 33 0
630 206 49 56 12 0 7 30
648 202 27 21 48 20 42 0

666 198 4 47 24 41 16 30
684 193 42 13 1 1 51 0
702 189 19 38 37 22 25 30

720 184 57 4 13 43 0 0
738 180 34 29 50 3 34 30
756 176 11 55 26 24 9 0

774 171 49 21 2 44 43 30
792 167 26 46 39 5 18 0
810 163 4 12 15 25 52 30
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Single
Years 0 , „ „ „

I 359 45 24 45 21 8 35
2 359 30 49 30 42 17 10
3 359 16 14 16 3 25 45

4 359 1 39 1 24 34 20
5 358 47 3 46 45 42 55
6 358 32 28 32 6 51 30

7 358 17 53 17 28 0 5
8 358 3 18 2 49 8 40
9 357 48 42 48 10 17 15

10 357 34 7 33 31 25 50
11 357 19 32 18 52 34 25
12 357 4 57 4 13 43 0

13 356 50 21 49 34 51 35
14 356 35 46 34 56 0 10
15 356 21 11 20 17 8 45

16 356 6 36 5 38 17 20
17 355 52 0 50 59 25 55
18 355 37 25 36 20 34 30

Hours o .// tutr

1 0 2 27 50 43 3 1
2 0 4 55 41 26 6 2
3 0 7 23 32 9 9 3

4 0 9 51 22 52 12 5
5 0 12 19 13 35 15 6
6 0 14 47 4 18 18 7

7 0 17 14 55 1 21 9
8 0 19 42 45 44 24 10
9 0 22 10 36 27 27 11

10 0 24 38 27 10 30 12
11 0 27 6 17 53 33 14
12 0 29 34 8 36 36 15

13 0 32 1 59 19 39 16
14 0 34 29 50 2 42 18
15 0 36 57 40 45 45 19

16 0 39 25 31 28 48 20
17 0 41 53 22 11 51 21
18 0 44 21 12 54 54 23

19 0 46 49 3 37 57 24
20 0 49 16 54 21 0 25
21 0 51 44 45 4 3 27

22 0 54 12 35 47 6 28
23 0 56 40 26 30 9 29
24 0 59 8 17 13 12 31

Months O , /////

30 29 34 8 36 36 15 30
60 59 8 17 13 12 31 0
90 88 42 25 49 48 46 30

120 118 16 34 26 25 2 0
150 147 50 43 3 1 17 30
180 177 24 51 39 37 33 0

210 206 59 0 16 13 48 30
240 236 33 8 52 50 4 0
270 266 7 17 29 26 19 30

300 295 41 26 6 2 35 0
330 325 15 34 42 38 50 30
360 354 49 43 19 15 6 0

Days O f ir* t fft  e i m  ///</<

1 0 59 8 17 13 12 31
2 1 58 16 34 26 25 2
3 2 57 24 51 39 37 33

4 3 56 33 8 52 50 4
5 4 55 41 26 6 2 35
6 5 54 49 43 19 15 6

7 6 53 58 0 32 27 37
8 7 53 6 17 45 40 8
9 8 52 14 34 58 52 39

10 9 51 22 52 12 5 10
11 10 50 31 9 25 17 41
12 11 49 39 26 38 30 12

13 12 48 47 43 51 42 43
14 13 47 56 1 4 55 U
15 14 47 4 18 18 7 45

16 15 46 12 35 31 20 16
17 16 45 20 52 44 32 47
18 17 44 29 9 57 45 18

19 18 43 37 27 10 57 49
20 19 42 45 44 24 10 20
21 20 41 54 1 37 '22 51

22 21 41 2 18 50 35 22
23 22 40 10 36 3 47 53
24 23 39 18 53 17 0 24

25 24 38 27- 10 30 12 55
26 25 37 35 27 43 25 26
27 26 36 43 44 56 37 57

28 27 35 52 2 9 50 28
29 28 35 0 19 23 2. 59
30 29 34 8 36 36 15 30
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AB and GD in equal times, hut will [in so doing] appear to have traversed 
unequal arcs ol’ a circle drawn on centre Z. For 

Z BEA = Z GED.
But Z B Z A < Z  BEA (or Z GED), 

and Z GZD > Z  GED (or Z BEA).
H 2I8 In the epicyclic hypothesis: we imagine [see Fig. .3.2] the circle concentric 

with the ecliptic as ABGD on centre E. with diam eter AEG, and the epicycle 
carried by it, on which the body moves, as Z H 0 K  on centre A.

Then here too it is im m ediateh’ obvious that, as the epicycle traverses circle 
ABGD with uniform motion, say from A towards B, and as the body traverses 
the epicycle with unilorm motion, then when the body is at points Z a n d 0 ,  it 
will appear to coincide with A, the centre of the epicycle, but when it is at other 
points it will not. Thus when it is, e.g., at H, its motion will appear greater than 
the uniform motion [of the epicycle] by arc AH, and similarly when it is at K  its 
motion will appear less than the uniform by arc AK.

Now in this kind of eccentric hypothesis^^ the least speed always occurs at the 
apogee and the greatest at the perigee, since Z AZB [in Fig. 3.1] is always less 
than Z DZG. But in the epicyclic hypothesis both this and the reverse are 
possible. For the motion of the epicycle is towards the rear with respect to the 

H219 heavens, say from A towards B [in Fig. 3.2]. Now if the motion of the body on 
the epicycle is such that it too moves rearw ards from the apogee, that is from Z 
towards H, the greatest speed will occur at the apogee, since at that point both

Ptolemy is hinting at the existence of another kind of eccentric hypothesis, one which is 
geometrically equivalent to that epicyclic hypothesis in which the sense of rotation is the same for 
lx)th planet and epicycle. But he does not discuss this until X I I 1 (p. 555), where we learn that the 
equivalence was already known to Apollonius of Perge (c. 200 B.C.). See H AM A  149- 
50.
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epicycle and body are moving in the same direction. But if the motion ol'the 
body from the apogee is in advance on the epicycle, that is from Z towards K, 
then the reverse will occur: the least speed will occur at the apogee, since at that 
point the body is moving in the opposite direction to the epicycle.

H aving established that, we must next make the additional preliminary 
point that tor bodies which exhibit a double anom aly both the above 
hypotheses may be combined, as we shall prove in our discussions of such 
bodies, but for a body which displays a single invariant anom aly, a single one of 
the above hypotheses will suirice; and [in this case] all the phenom ena will be 
represented, with no difl'erence, by either hypothesis, provided that the same 
ratios are preserved in both. By this I mean that the ratio, in the eccentric 
hypothesis, of the distance between the centre of vision and  the centre of the 
eccentre to the radius of the eccentre, must be the same as the ratio, in the 
epicyclic hypothesis, of the radius of the epicycle to the radius o f the deferent;^^ 
and furthermore that the time taken by the body, travelling towards the rear, to 
traverse the immovable eccentre, must be the same as the tim e taken by the 
epicycle, also travelling towards the rear, to traverse the circle w ith the observer 
as centre [the deferent], while the body moves with equal [angular] speed about 
the epicycle, but so that its motion at the apogee [of the epicycle] is in advance.

If  these conditions are fulfilled, the identical phenom ena will result from 
either hypothesis. We shall briefly show this [now] by com paring the ratios in '  
abstract, and later by means of the actual numbers we shall assign to them for

H220

‘deferent’: see Introduction p. 21.



the sun’s anomaly. I say then, first, that in both hypotheses, the greatest 
difference between the uniform m otion and the apparent, non-uniform motion 
(which is also the notional position of the m ean speed for the bodies)^® occurs 
when the apparent distance from the apogee comprises a quadran t, and that 
the time between apogee [position] and the above-mentioned mean speed 
[position] is greater than the time between m ean speed and perigee. Hence, for 
the eccentric hyp>othesis always, and for the epicyclic hypothesis when the 
motion at apogee is in advance, the time from least speed to m ean is greater 

H221 than the time from mean speed to greatest; for in both hypotheses the slowest 
motion takes place at the ap)ogee. But [for the epicyclic hypothesis] when the 
sense of revolution of the body is rearwards from the apogee on the epicycle, the 
reverse is true: the time from greatest speed to mean is greater than the time 
from mean to least, since in this case the greatest speed occurs at the apogee.

First, then, [see Fig. 3.3] let the body’s eccenter be ABGD on centre E, with 
diam eter AEG. O n this diam eter take the centre of the ecliptic, that is, the 
position of the obseiA er, at Z, and draw  BZD through Z at right angles to AEG, 
Let the positions of the body he B and D, so that, obviously, its apparent 
distance Irom apogee A is a quadrant on either side. W e have to prove that the 
greatest difference between mean and anomalistic motion takes place at points 
B and D.

Jo in  EB and ED.
It is immediately obvious that the ratio ofZ EBZ to 4 right angles equals the

fl
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'^Relerence to III 4 p. 157.
Ptolemy never aUempts to prove this staiement alwiit the |x>sition where the apparent motion 

ftjuals the mean motion, l>ul it is intuitively seen to he true i'rom the epicyclic model. See HAMA  57, 
Pedersen 143.



ratio of the arc of the difference due to the anomaly^* to the whole circle; for H222 
Z AEB subtends the arc of the uniform motion, and  ZAZB subtends the arc of the 
apparent, non-uniform motion, and the difference between them is Z EBZ.

I say, then, tha t no angle greater than  these two [Z EBZ and Z EDZ] can be 
constructed on line EZ at the circumference of circle ABGD.
[Proof;] Construct at points © and K  angles E 0 Z  and EK Z, and  join ©D, KD.
T hen  since, in any triangle, the greater side subtends the greater angle, 

and ® Z > Z D ,
Z ©DZ >  Z D©Z.

But Z ED© = Z E©D, since E© = ED [radii].
Therefore, by addition, Z EDZ (=Z EBD) >  Z E 0 Z .

Again, since DZ > K Z ,
Z ZK D  > Z  ZD K.

But Z EK D  = Z ED K, since E K  = ED.
Therefore, by subtraction, Z EDZ (= Z EBZ) > Z  EKZ.

Therefore it is impossible for any other angle to be constructed in the way H223 
defined greater than those a t points B and D.

Simultaneously it is proven that arc AB, which represents the time from least 
speed to mean, exceeds BG, which represents the time from mean speed to 
greatest, by twice the arc comprising the equation of anomaly. For Z AEB 
exceeds a right angle (Z EZB) by Z EBZ, and Z BEG falls short of a right angle 
by the same am ount.

To prove the same theorem again for the other hypothesis, let [Fig. 3.4] the 
circle concentric with the universe be ABG on centre D  and diam eter ADB, and 
let the epicycle which is carried around it in the same plane be EZH on centre 
A. Let us suppose the body to be at H when its apparen t distance from the 
apogee is a quadrant. Jo in  AH and DHG.

I say that D H G  is tangent to the epicycle; for tha t is the position in which the 
dilference between uniform and anomalistic motion is greatest. H224
[Proof:] T he m ean motion, counted from the apogee, is represented byZ EAH; 
for the body traverses the epicycle with the same [angular] speed as the epicycle 
traverses circle ABG. Furtherm ore the dilference between m ean and apparent 
motion is represented by Z ADH. Therefore it is clear th a t the am ount by which 
Z EAH exceeds Z ADH (namely Z AHD) represents the apparent distance of 
the body from the apogee. But this distance is, by hypothesis, a quadrant.
Thei efore Z AHD is a right angle, and hence line D H G  is tangent to epicycle 
EZH. Therefore arc .AG, since it comprises the distance between the centre A 
and the tangent, is the greatest possible difl'erence due to the anomaly.

By the same reasoning, arc EH, which according to the sense of rotation on
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**’This expression is later used as a technical term for the angle corresponding to Z EBZ here, and 
is usually translated 'equation of anomaK'. See Introduction pp. 21-2.

"  Precisely this statement, that the greater angle is subtended by the greater side, is the - 
enunciation of Euclid I 19 (which Heilierg refers to ad loc.)- But in fact what underlies Ptolemy’S' 
statement is that, if side a is greater than side b, angle A is greater than angle B. which isEuclidl 18. 
Perhaps we should adopt the reading of D, bnb TTjv (iEi^ova 7rA.eupdv fj (ic't^cov ytovia ujroTcivet 
(‘the greater angle subtends the greater side’), and assume that the text has been assimilated to the 
(wrong) Euclidean wording.
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the epicycle assumed here, represents the time from least speed to mean, 
exceeds arc HZ, which represents the time from m ean speed to greatest, by 

H225 twice arc AG. For if we produce DH to 0  and  draw  A K 0  a t right angles to EZ,
Z K A H  = Z ADG,3« 

and arc K H  = arc AG.*’
And arc EK H  is greater than a quadran t by arc K H ,
while arc Z H  is less than a  quadran t by arc KH.

Q;E.D.
It is also true that the same effects will be produced by both hypotheses if one 

takes a partial motion over the same stretch of time for both, w hether one 
considers the mean motion or the apparent, o r the difference between them, 
that is the equation of anomaly. T he best way to see that is as follows.

[See Fig. 3.5.]"*® Let the circle concentric with the ecliptic be ABG on centre 
D, and let the circle which is eccentric but equal to the concentre ABG be EZH  
on centre 0 .  Let the common diam eter through their centres D, 0  and the

”  Euclid VI 8.
** To get a grammatical text I excise 6tioia at H225,4. It was introduced (at an early period, sincc 

it is reflected in the Arabic translations) as a correction of Ptolemy’s inaccurate (to the scholastic 
mind) statement that arc K H  equals arc AG. Since the arcs are on circles of diilerent sizes, they are 
technically only ‘similar’. An alternative correction would be lo a i nev yiyvovTai di re vno  KAH 
Koi AAH ywv'iai (which is actually found in Theon's commentary ad loc., Rome III 868,8, but is 
probably a  paraphrase; it also seems to be behind L).

The figure in Heiberg (p. 225) wrongly omits the letter corresponding to L (though this is found 
in all mss.). Manitiiis, misled by this, ‘emended’ AA at H226,23 to the nonsensical ‘AB’.
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apogee E be EA 0D . C ut off at random  afl arc AB on the concentre, and with 
centre B and  radius D© draw  the epicycle K Z. Jo in  KBD.

I say that the body will be carried by both kinds o f  m otion [i.e. according to 
both hypotheses] to point Z, the intersection of the eccentre and the epicycle, in 
the same time in all cases (that is, the three arcs, EZ on the eccentre, AB on the

H226

concentre, and K.Z on the epicycle, are all similar), and  tha t the difference 
between uniform and anomalistic motion, and the apparen t positions of the 
body, will turn out to be one and the same according to both hypotheses. 
[Proof;] Jo in  Z 0 , BZ and DZ.

Since, in the quadrilateral B D 0Z , the opfKJsite sides are equal, Z 0  to BD and 
BZ to D 0 , B D 0Z  is a parallelogram.

Therefore Z E 0 Z  = Z ADB = I  ZBK.
Therefore, since they are angles at the centre [of circles], the arcs subtended 

by them are also similar, i.e.
Arc EZ of the eccentre j] arc AB of the concentre || arc K Z of the epicycle.
Therefore the body will be carried by both kinds of motions in the same time 

to the same point, Z, and will appear to have traversed the same arc AL of the 
ecliptic from the apogee, and accordingly the equation of anom aly will be the 
same in both hypotheses; for we showed that that equation is represented by 
Z D Z 0  in the eccentric hypothesis and by ZBDZ in the epicyclic hypothesis, and 
these two angles are alternate and equal, since, as we have shown, Z 0  is parallel 
to BD.

It is obvious that the same results will hold good for all distances [of the body 
from the apogee]. For quadrilateral 0D Z B  will always be a  parallelogram, and 
[hence] the motion of the body on the epicycle will actually describe the

H227
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eccentric circle, provided the ratios^' a re  similar and their memljers equal in 
both hypotheses.

Moreover, even if  the members are unequal in size, provided their ratios are 
similar, the same phenom ena will result. This can be shown as {ollows.

As before [see Fig. 3.6] let the circle concentric with the universe be ABG on 
centre D and the diameter, on which the body reaches apogee and perigee 
positions, ADG. Let the epicycle be draw n on point B, at an arb itrary  distance, 
arc AB, from apogee A. Let the arc traversed by the body [on the epicycle] be 
EZ, which is, obviously, similar to AB, since the revolutions on [both] circles 
have the same period. Jo in  DBE, BZ, DZ.
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Now it is immediately obvious that, according to this [epicyclic] hypothesis, 
Z ADE will always equal Z ZBE, and the body will appear to lie on line DZ.

But I say that the body will also appear to lie on the same line DZ according 
to the eccentric hypothesis, whether the eccentre is greater or smaller than the 
concentre ABG, provided only that one assumes that the ratios are similar and 
that the periods of revolution are the same.
[Proof:] Let the eccentre be draw n under the conditions we have described, 
greater [than the concentre] as H© on centre K  ([which must lie] on AG), and

The ratios arc c:R aiid nR .
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smaller [than the concentre] as LM  on centre N  (this too [must lie on AG]). 
Produce DZ as D M Z 0 , and DA as DLAH, and  jo in  © K , M N.

T hen  since
DB:BZ = © K :K D  = M N :N D  [by hypothesis], 

and Z BZD = Z M D N  (since DA is parallel to BZ);
the three triangles [ZD B ,D 0K ,D M N ] are equiangular, 

and Z BDZ = Z D 0 K  = Z D M N  (angles subtended by corresponding sides).
Therefore DB, 0 K  and M N are parallel.

•. Z ADB = Z A K 0  = Z ANM .
Since these angles are a t the centres of their circles, the arcs on them, AB, H 0  

and LM , will also be similar.
So it is true, not only that the epicycle has traversed arc AB in the same time 

as the body has traversed arc EZ, but also that the body will have traversed arcs 
H© and LM  on the eccentres in that same time; hence in every case it will be 
seen along the same line D M Z 0 , according to the epicyclic [hypothesis] at 
point Z, according to the greater eccentre at point ©, and according to the 
smaller cccentre at point M. T he same will hold true in all positions.

A further consequence is that where the apparent distance of the lx>dy from 
apogee [at one moment] equals its apparent distance from perigee [at another], 
the equation of anomaly will be the same at both positions.
[Proof:] In the eccentric hypothesis [see Fig. 3.7], we draw  the eccentric circle

H229
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ABGD on centre E and diam eter AEG through apogee A. We suppose the. H230 
observer to be located at Z, and draw  an arb itrary  [chord] BZD through Z, and 
join EB and ED. Then the apparent positions [ o f the body at B and D] will be 
equal and opposite, that is the angle AZB from the apogee will be equal and
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opposite to angle G ZD  from the perigee; and the equation of anom aly will be 
the same [in both cases], since

BE = ED, and  Z EBZ = Z EDZ.
So the arc [AB] of mean motion counted from the apogee A will exceed the arc of 
apparent motion (i.e. the arc subtended by angle AZB) by the same equation 
[equal to Z EBZ] as the arc of mean motion counted from the perigee G is 
exceeded by the arc oi apparent m otion (i.e. the [equal] arc subtended by 
Z GZD). For

Z AEB > Z  AZB, and Z G ED <  Z GZD.
In the epicyclic hypothesis [see Fig. 3.8] if, as before, we draw  the concentre 

ABG on centre D and diam eter ADG, and the epicycle EZH  on centre A, draw 
an arbitrary line DHBZ, and join AZ and AH, then the arc AB representing the 
equation of anomaly will be the same at both positions, i.e. w hether the body is

G
Fig. 3.8

at Z or at H. And the distance of the body from the p>oint on the ecliptic 
corresponding to the apogee when it is at Z will be equal to its distance from the 
point corresponding to the perigee when it is at H. For the arc of its apparent 
distance from the apogee is represented by Z DZA, since, as we showed, this is 
the difference between the mean motion and the equation of anomaly.'*^ And 
the arc of its apparent distance from the perigee is represented by Z ZH A  (for 
this, too, is equal to the mean motion from the perigee plus the equation of 
anomaly).

But Z DZA = Z ZHA, since AZ = AH.

DZA = Z EAZ-Z ADZ. Shown p. 147.



Thus here too we conclude that the mean motion exceeds the apparent near 
the apogee (i.e. Z EAZ exceeds/ AZD) by the same equation (namely Z ADH) 
as the m ean m otion is exceeded by the (same) apparent motion (i.e. Z HAD by H232 
Z AHZ) near the perigee.

Q .E.D.
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4. {On the apparent anomaly o f the sun}*^

H aving set out the above prelim inary theorems, we must add a further 
prelim inary thesis concerning the apparent anom aly of the sun. This has to be a 
single anomaly, of such a kind that the time taken from least speed to mean shall 
always be greater than the time from mean sp>eed to greatest, for we find that 
this accords with the phenomena. Now this could be represented by either of the 
hypotheses described above, though in case of the epicyclic hypothesis the 
motion of the sun on the apogee arc of the epicycle would have to be in advance. 
Howev'er, it would seem more reasonable to associate it with the eccentric 
hypothesis, since that is simpler and is performed by means of one motion 
instead of two.*'*

O ur first task is to find the ratio of the eccentricity of the sun’s circle, that is, 
the ratio which the distance between the centre of the eccentre and the centre of 
the ecliptic (located at the obser\'er) bears to the radius of the eccentre. We must 
also find the degree of the ecliptic in which the apogee of the eccentre is located.
These problems have been solved by H ipparchus with great care. He assumes H233 
tha t the interval from spring equinox to summ er solstice is 94^ days, and that the 
interval from summer solstice to autum nal equinox is 92i days, and then, with 
these observations as his sole data, shows that the line segment between the 
above-mentioned centres [of eccentre and ecliptic] is approxim ately 53th of the 
radius of the eccentre, and that the apogee is approxim ately 2M° (where the 
ecliptic is divided into 360°) in advance of the summ er solstice. We too, for our 
own time, find approxim ately the same values for the times [taken by the sun to 
traverse] the above-mentioned quadrants, and for those ratios. Hence it is clear 
to us that the sun’s eccentre always maintains the same position relative to the 
solsticial and equinoctial points.*®

In order not to neglect this topic, but rather to display the theorem worked 
out according to our own num erical solution, we too shall solve the problem, for 
the eccentre, using the same observed data, namely, as already stated, that the 
interv al from spring equinox to summ er solstice comprises 94^ days, and that

«S cc H AM A  57-8, Pedersen 144-9.
the desirability of simplicity in hypotheses see III 1 p. 136 with n.l7 .

Reading [iexa rtdon^ OJtoo5f^(; (with D, Ar) at H233.1-2 for vietd OJiouS*f̂ (; (‘with care’).
‘̂ According to Ptolemy the sun’s apogee (unlike those of the five planets, as it later tuiiis out, IX 

7) does not share in the motion of precession. The reproaches that have been cast on Ptolemy (e.g. 
by M anitius I 428-9) for failing to discover that the sun’s apogee too has a  motion through the ' 
ecliptic are unjustified. To do that he would have needed observations of the time of equinox and 
solstice far more accurate than those available (to the nearest i-day), and not only for his own time 
but also for an earlier time. See the papers by Rome(3] and Petersen and Schmidt for a 
mathematical demonstration of this.



Book IX
1. {On the order o f the spheres o f sun, moon and the 5 planets]

Such, then, more or less, is the sum total of the chief' topics one may mention as 
having to do with the fixed stars, in so far as the phenom ena [observed] up to 
now provide the means of progress in our understanding. There remains, to 
[complete] our treatise, the treatm ent of the five planets. To avoid repetition we 
shall, as far as possible, explain the theory of the latter by means of an exposition 
common [to all live], treating each of the methods [for all planets] together.

First, then, [to discuss] the order of their spheres, which are all situated [with 
their poles] nearly coinciding with the poles of the inclined, ecliptic circle: we 
see that almost all the foremost astronomers agree that all the spheres are closer 
to the earth  than that of the fixed stars, and farther from the earth than that of 
the moon, and that those of the three [outer planets] are farther from the earth 
than those of the other [two] and the sun, S aturn’s being greatest, Jup iter's  the 
next in order towards the earth, and M ars' below that. But concerning the H207 
spheres of \'en u s  and Met cur\’, we see that they are placed below the sun’s by 
the more ancient astronomers, but by some oftheirsuccessors these too are placed 
above [the sun’s],' for the reason that the sun has never been obscured by them 
[Venus and M ercury] either. To us. however, such a criterion seems to have an 
element of uncertainty, since it is possible that some planets might indeed be 
below the sun, but nevertheless not always be in one of the planes through the 
sun and our viewpoint, but in another [plane], and hence might not be seen 
passing in front of it, just as in the case of the moon, when it passes below [the 
sun] at conjunction, no obscuration results in most cases.-’

And since there is no other way, either, to make progress in our knowledge of 
this m atter, since none of the stars^ has a noticeable parallax (which is the only 
phenom enon from which the distances can be derived), the order assumed by 
the older [astronomers] appears the more plausible. For, by putting the sun in 
the middle, it is more in accordance with the nature [of the bodies] in thus

' There is a good deal of evidence for the identity of some of those who held the sccond opinion, 
including Plato, Eratosthenes and Archimedes. For details on this and other ancient arrangements 
see H AM A  II 690-3.

 ̂Le. no transits of Venus or Mercury had been observed. Neugebauer has shown {HAMA 227-30) 
that transits are in fact predictable from Ptolemy’s own theory. Ptolemy later seems to have realized 
this, for in the Planetary Hypotheses (ed. Goldstein 2,28,10-12) he says: ‘ifa body of such small size (aS 
a planet) were to occult a body of such l a i ^  size and with so much light (as the sun), it would 
necessarily be imperceptible, because of the smallness of the occulting body and the state of the parts 
of the sun’s body which remain uncovered.’ (Goldstein’s translation here, p.6, is inaccurate).

 ̂This includes both fixed stars and planets.



separating those which reach all jxwsible distances ii"om the sun and those 
which do not do so, but always move in its vicinity; provided only that it does 
not remove the latter close enough to the earth  that there can result a parallax of 
any size/

H208 2. {On our purpose in the hypotheses o f the ptanels]

So much, then, for the arrangem ents of the spheres. Now it is our purpose to 
demonstrate for the five planets, just as we did for the sun and moon, that all 
their apparent anomalies can be represented by uniform circular motions, since 
these are prof>er to the nature of divine beings, while disorder and non­
uniformity are alien [to such beings]. Then it is right that we should think 
success in such a purpose a great thing, and truly the proper end of the 
mathem atical part of theoretical philosophy.'* But, on many grounds, we must 
think that it is diiiicult, and that there is good reason why no-orie before us has 
yet succeeded in it.” For, [firstly], in investigations of the f>eriodic motions of a 
planet, the possible [inaccurac\] resulting from comparison of [two] obser­
vations (at each of which the observ^er may have com mitted a small 
observational error) will, when accum ulated over a continuous period, produce 
a noticeable difference [from the true state] sooner when the interval [between 
the obser\ ations] over which the examination is made is shorter, and less soon 
when it is longer. But we have records of planetary observ'ations only from a 
time which is recent in comparison with such a vast enterprise: this makes 
prediction for a time many times greater [than ihe in te r\a l ibr which 
observations are available] insecure. [Secondly], in investigation of the 
anomalies, considerable confusion stems from the fact that it is apparent that 
each planet exhibits two anomalies, which are moreover unequal both in their

H209 amoimt and in the p>eriods of their return: one [return] is observed to be related 
to the sun, the other to the position in the ecliptic; but both anomalies are 
continuously combined, whence it is dilficult to distinguish the characteristics 
of each individually. [It is] also [confusing] that most of the ancient [planetary] 
observations have been recorded in a way which is difilcult to evaluate, and 
crude. For [1] the more continuous series of observations concern stations and 
phases [i.e. first and last visibilities].’ But detection of both of these particular

* In his Planftarr Hypolfieses (see Goldstein’s edition) Ptolemy proposes a system in which the 
sphei-es of the planets are contiguous; thus the greatest distance Irom the earth attained by a planet 
is equal to the least distance attained by the one next in order outwards. This appears to provide 
supfX)rt for the order he adopts here, since it results in a solar distance very nearly the same as that 
obtained by a ditl'erent method in Almagest \ ’ 15. Since this system also brings Mercury. at its least 
distance, to the moon’s greatest distance (64 earth-radii). Mercury ought to exhibit a considerable 
parallax, contrary to what is enunciated here.

’Cr. l i p .  35.’
" We cannot doubt that not only planetary theories but planetary tables had been constructed 

Ijelbre Ptolemy: the prool is supplied by Indian astronom \, which is based on Greek theories which 
arc largely, if not entirely, pre-Ptolemaic, and indeed by Ptolemy's own reference to the ‘.Aeon- 
tables' l)elow (p. 422). W hat he means is that all previous efforts were, by his criteria, 
unsatisfactory

‘ Ptolemy is certainly thinking of the Babylonian planetary observations, which are characteristi­
cally of this type. They have liccome available to us through the diaries’ (see Sachs[2]). but to 
Ptolemy were probably known only through Hipparchus’ compilation (see p. 421).

420 I X  1. Order o f  the planetary spheres



phenom ena is fraught with uncertainty: stations cannot be fixed a t an  exact 
moment, since the local m otion of the planet for several days both before and 
after the actual station is too small to be observable; in the case of the phases, not 
only do the places [in which the planets are located] immediately become 
invisible together with the bodies which are undergoing their first o r last 
visibility, but the times too can be in error, both because of atmospherical 
differences and because of differences in the [sharpness of] vision of the observers.
[2J In general, observations [of planets] with respect to one oi the fixed stars, 
when taken over a com paratively great distance, involve difllcult computations 
and an element of guesswork in the quantity  measured, unless one carries them 
out in a m anner which is thoroughly com petent and knowledgeable. This is not 
only because the lines joining the observed stars do not always form right angles 
with the ecliptic, but may form an angle of any size (hence one may expect 
considerable error in determ ining the position in latitude and longitude, due to H210 
the varying inclination of the ecliptic [to the horizon frame of reference]); but 
also because the same interval [betw'een star and planet] appears to the observer 
as greater near the horizon, and less near mid-heaven;® hence, obviously, the 
inteival in question can be measured as at one time greater, at another less than 
it is in reality.

Hence it was, I think, that H ipparchus, being a great lover of truth, for all the 
above reasons, and especially because he did not yet have in his possession such 
a groundwork of xesources in the form of accurate observations from earlier 
times as he himself has provided to us.® although he investigated the theories of 
the sun and moon, and, to the best of his ability, dem onstrated with every 
means at his com m and that they are represented by uniform circular motions, 
did not even make a beginning in establishing theories for the five planets, not at 
least in his writings which have come down to u s .A l l  tha t he did was to make a 
compilation of the planetary observations arranged in a more useful w ay," and 
to show by means of these that the phenom ena were not in agreement with the 
hypotheses of the astronomers of that time. For, we may presume, he thought 
that one must not only show that each planet has a twofold anomaly, or that 
each planet has retrograde arcs which are not constant, and are of such and 
such sizes (whereas the other astronomers had constructed their geometrical 
proofs on the basis of a single unvarying anom aly and retrograde arc); nor [that 
it was sufficient to show] that these anomalies can in fact be represented either

®This appears to be the only relerencc to the effect ol’ rei'raciion (if that is what it is) in the 
Alnrjagest. despite its obvious relevance e.g. to the observ ations ofMercurv 's greatest elongations in 
IX 7. Ptolemv discusses it (as a theoretical problem) in some detail in Optics \ '  23-30 (ed. Lejeune 
237-42).

*This seems to imply that Hipparchus recorded planetary observations of his own, which 
Ptolemy used to establish his theories. This may be true, but it is strange that Ptolemy cites not a 
single such observation by Hipparchus. Could Ptolemy mean merely that Hipparchus had not 'yet’ 
assembled the compilation of earlier planetary observations which he mentions just below?

The circulation of books in antiquity was so fortuitous that, even for one, like Ptolemy, who had 
access to the great resources of the libraries a t Alexandria, this was a necessary caveat.

“ I have little doubt that all the older planetary observations cited in the Almagest are derived 
from this compilation (cf. p. 452 n.66), and that part of Hipparchus’ ‘rearrangem ent’ was to give 
their dates in the Egyptian calendar. For a similar service he rendered for the listing of lunar eclipses 
see HAMA  320-21.
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H21I by means of eccentric circles or by circles concentric with the ecliptic, and 
carrying epicycles, or even by com bining both, the ecliptic anom aly being of 
such and such a size, and the synodic anom aly of such and such (for these 
representations have been employed by almost all those who tried to exhibit the 
uniform circular motion by means of the so-called ‘Aeon-tables’,*̂  but their 
attem pts were faulty and a t the same time lacked proofs: some of them  did not 
achieve their object a t all, the others only to a limited extent); but, [we may 
presume], he reckoned that one who has reached such a pitch of accuracy and 
love of tru th  throughout the m athem atical sciences will not be content to stop at 
the above point, like the others who did not care [about the imperfections]; 
rather, that anyone who was to convince himself and his future audience must 
demonstrate the size and the period of each of the two anomalies by means of 
well-attested phenom ena which everyone agrees on, must then combine both 
anomalies, and discover the f)osition and order of the circles by which they are 
brought about, and the type of their motion; and finally must make practically 
all the phenomena fit the particular character of the arrangem ent of circles in 
his hypothesis. And this, I suspect, appeared diiricult even to him.

The point of the above remarks was not to boast [of our own achievement]. 
Rather, if we are at any point compelled by the nature of our subject to use a 
procedure not in strict accordance with theory (for instance, when we carry out 
proofs using without further qualification the circles'^ described in the 

H212 planetary spheres by the movement [of the body, i.e.] assuming that these 
circles lie in the plane of the ecliptic.'^ to simplify the course of the proof); or [if 
we are compelled] to make some basic assumptions which we arrived at not 
from some readily apparent principle, bu t from a long period of trial and 
application,** or to assume a type of motion or inclination of the circles which is 
not the same and unchanged for all p la n e ts ;w e  may [be allowed to] accede 
[to this compulsion], since we know that this kind of inexact procedure will not 
affect the end desired, provided that it is not going to result in any noticeable 
error; and we know too that assumptions m ade without proof, provided only 
that they are found to be in agreem ent with the phenomena, could not have 
been found without some careful methodological procedure, even if it is difficult

‘-5id Tî c; tcaXounevtii; aitoviou KavovoJtoiio(;. In my opinion, Ptolemy is referring t a a  type of 
work in which the mean motions of the planets were represented by integer numt>ers of revolutions 
in some huge period, in which they all return to the beginning of the zodiac, and the planetary 
equations were calculated by a combination of epicycles or of eccentre and epicycle which was not 
reducible to a geometrically consistent kinematic model, i.e. to a class of Greek works which were 
the ancestors oi'the Indian siddhantas. In this 1 am in agreement with \'an der W aerden, 'Ewige 
Tafeln’, except that I believe that the aiciv implied by the title of these tables does not mean 
‘eternity’ (cf. the conventional translation, ‘Eternal Tables’, which is philologically possible, but 
not necessary ), but rd ’ers to the immense common period in which the planets return (cf. the Greek 
inscription of Keskinto, HAMA  698-705, and the Indian M ahayuga). The other two references to 
these tables in antiquity (P. Lend. 130, see Neugebauer-van Hoesen, Greek Horoscopes p. 2 1 ,1 12-13, 
and V'ettius V’alens VI I, ed. Kroll 243,8} are consistent with, but do not require, this 
interpretation.

Literally ‘as if the circles were bare [circles]’.
Ptolemy in fact carries out all the proofs involving the longitudinal motions of the planets (in 

Bks. IX -X II) as if the motions lay in the plane of the ecliptic.
'*Thc paradigm case of this is the introduction of the equant.

E.g. the special model for the longitudinal motions of Mercury, or the special inclinations 
attributed to the inner planets for their latitudinal motions.
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to explain how one came to conceive them  (for, in general, the cause oi'first 
principles is, by nature, either non-existent o r hard to describe); we know, 
finally, that some variety in the type ofhypotheses associated with the circles [of 
the planets] cannot plausibly be considered strange or contrary to reason 
(especially since the phenom ena exhibited by the actual planets are not alike 
[for all]); for, when uniform circular motion is preserved for all without 
exception, the individual phenom ena are dem onstrated in accordance with a 
principle which is more basic and more generally applicable than that of 
similarity of the hypotheses [for all planets].

The observations which we use lor the various demonstrations are those H213 
which are most likely to be reliable, namely [ 1 ( those in which there is observed 
actual contact or very close approach to a star or the moon, and especially [2] 
those m ade by means ol'the astrolabe instruments. [In these] the observer’s line 
of vision is directed, as it were, by means of the sighting-holes on opposite sides 
of the rings, thus observing equal distances as ecjual arcs in all directions, and 
can accurately determ ine the position of the planet in question in latitude and 
longitude with respect to the ecliptic, by moving the ecliptic ring on the 
astrolabe, and the diametrically opposite sighting-holes on the rings'' through 
the poles of the ecliptic, into alignment with the object observed.

3. [On the periodic ref tons o f the five planelsY^

Now tliat we liave completed the above discussion, we will first set out. foi each 
of the 5 planets, the smallest period in which it makes an approxim ate return in 
both anomalies, as computed by H ip p a rc h u s .T h e s e  [periods] have been 
corrected by us. on the basis of the comparison of their positions which bccame 
possible alter we had dem onstrated their anomalies, as we shall explain at that 
po in t.'” However, we anticipate and put them here, so as to have the individual 
mean motions in longitude and anom aly set out in a convenient form for the H214 
calculations of the anomalies. But it would in fact make no noticeable dillerence 
in those calculations"' even if one used more roughly com puted mean positions.

”  It is not d e a r  why the plural (‘rings’) is used (contrast the singular at V 1, H354,13). Although 
the sights are attached only to ring 1 in Fig. F (p. 218). Ptolemy is presumably referring to both 
ring I and ring 2, smce ring 2 has first to be moved to the correct sighting position on the ecliptic 
ring (no. 3).

‘®See HAAJA 150-2, Pedersen (270) has fallen into some confusion about Ptolemy’s procedure: 
see Toomer[3] 144-5.

** If Ptolemy means, as we may presume, that the periods ‘computed by Hipparchus’ are the 
relationships in integers, '51 returns in anomaly correspond to 59 years and 2 revolutions in 
longitude’, etc., then he seems ignorant of the fact that these are well-known (to us) Babylonian 
period relationships (for details see HAMA  151).

^®This is a reference to the chapters on the ‘corrections of the mean motions’, I X 10, X 4, X9, XI 
3 and XI7. The ‘comparison’ refers to the use in these chapters of two positions, separated by a long 
time-interval, to derive the mean motions. O n the problem of the actual derivation of the 
corrections given here, and of the mean motions, see Appendix C.

Ptolemy means that where he uses the mean motions in determining the eccentricity (e.g. X  X 
p. 484) over the short periods involved (a few years) one could use quite crude parameters (e.g. the 
mean motions given by the uncorrected Babylonian periods) without seriously aflecting the final 
result. He is right (see p. 484 n.33). The corrected mean motions are given here merely for 
convenience. Cf. the procedure for the lunar mean motion table, p. 179.




